Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The lipid cis-trans isomerase (Cti) is a periplasmic heme-c enzyme found in several bacteria including Pseudomonas aeruginosa, a pathogen known for causing nosocomial infections. This metalloenzyme catalyzes the cis-trans isomerization of unsaturated fatty acids in order to rapidly modulate membrane fluidity in response to stresses that impede bacterial growth. As a consequence, breakthrough in the elucidation of the mechanism of this metalloenzyme might lead to new strategies to combat bacterial antibiotic resistance. We report the first comprehensive biochemical, electrochemical and spectroscopic characterization of a Cti enzyme. This has been possible by the successful purification of Cti from P. aeruginosa (Pa-Cti) in favorable yields with enzyme activity of 0.41 μmol/min/mg when tested with palmitoleic acid. Through a synergistic approach involving enzymology, site-directed mutagenesis, Raman spectroscopy, Mössbauer spectroscopy and electrochemistry, we identified the heme coordination and redox state, pinpointing Met163 as the sixth ligand of the Fe of heme-c in Pa-Cti. Significantly, the development of an innovative assay based on liposomes demonstrated for the first time that Cti catalyzes cis-trans isomerization directly using phospholipids as substrates without the need of protein partners, answering the important question about the substrate of Cti within the bacterial membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.202400844 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!