Herein, we report on the synthesis and stereochemistry of mono- and isomeric dinitrile derivatives of [(1,2-CBH)-3,3'-Co] ions. The shape and electronic properties of CN groups can apparently surmount the strain associated with the substitution of two vicinal carbon positions. Owing to electron donation to the cage, this results in a substituent-induced rearrangement of one of the carbon atoms to the upper pentagonal ring. The molecular structure of this isomer was confirmed using sc-XRD and DFT chemical computations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt02588a | DOI Listing |
ACS Appl Mater Interfaces
December 2024
TCS Research, Sahyadri Park 2, Rajiv Gandhi Infotech Park, Hinjewadi Phase 3, Pune 411057, India.
Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, 163318, China.
Porous carbon adsorption represents a critical component of CCUS technologies, with microporous structures playing an essential role in CO capture. The preparation of porous carbon introduces intrinsic defects, making it essential to consider both pore size and these defects for a comprehensive understanding of the CO adsorption mechanism. This study investigates the mechanisms of CO adsorption influenced by intrinsic defects and pore size using multiscale methods, incorporating experimental validation, Grand Canonical Monte Carlo simulations, and Density Functional Theory simulations.
View Article and Find Full Text PDFJ Mol Graph Model
December 2024
Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,11623, Saudi Arabia. Electronic address:
The work being presented now combines severe gradient boosting with Shapley values, a thriving merger within the field of explainable artificial intelligence. We also use a genetic algorithm to analyse the HDAC1 inhibitory activity of a broad pool of 1274 molecules experimentally reported for HDAC1 inhibition. We conduct this analysis to ascertain the HDAC1 inhibitory activity of these molecules.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, PR China; Engineering Research Center of Ministry of Education for Intelligent Rehabilitation Device and Detection Technology, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, Hebei University of Technology, Tianjin 300401, PR China; School of Mechanical Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401, PR China. Electronic address:
Transition-metal-loaded carbon-based electrocatalysts are promising alternatives to conventional precious metal electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in high-performance zinc-air batteries. However, efficiently doping transition-metal single atoms onto carbon-based frameworks is a significant challenge. Herein, an improved template-sacrificing method combining a two-step carbonization process is proposed to fabricate Cu/Co diatomic sites coanchored on a three-dimensional nitrogen-doped carbon-based framework.
View Article and Find Full Text PDFNanotechnology
December 2024
CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.
Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!