Background: Fenugreek (Trigonella foenum-graecum L.) is highly esteemed for its therapeutic properties and is widely used in traditional medicine and modern pharmacology. Enhancing its genetic traits and phytochemical profile, particularly its trigonelline content, can significantly increase its medicinal and agricultural value. This study aims to investigate the effects of gamma rays and Ethyl Methane Sulphonate (EMS) as mutagenic agents on the genetic and phytochemical characteristics of the M2 generation of fenugreek, focusing on genetic diversity and desirable trait enhancement.
Methods And Results: To achieve this, various concentrations of EMS and gamma rays were administered to fenugreek seeds, and 27 traits were assessed in the resulting M2 generation. These traits were analyzed for variance, mean values, and correlations. The genetic diversity of 23 M2 offspring was investigated using nine Start Codon Targeted (SCoT) markers. The genetic diversity assessment involved Principal Coordinate Analysis (PCoA) and cluster analysis, utilizing the Dice similarity coefficients and the Unweighted Pair Group Method with Arithmetic Mean (UPGMA). A Bayesian model provided deeper insights into the genetic structure. Results revealed that lower doses of gamma rays (100 Gy) and EMS (0.2%) positively impacted specific traits. In comparison, higher doses (200 Gy and 0.4% EMS) increased seed trigonelline content to 0.71 mg/g dry weight. Among the SCoT markers, SCoT-9 was the most efficient, segregating the populations into three clusters. The first three principal components in the PCoA explained 20% of the total variance, leading to seven subgroup populations distinction.
Conclusions: These findings underscore the potential of induced mutagenesis in enhancing desirable traits in fenugreek.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-024-10090-x | DOI Listing |
Environ Technol
January 2025
Solid-State Physics and Accelerators Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
Waste polyethylene (WPE) and virgin polyethylene (VPE) (50:50) thermoplastic have been melt-mixed with biochar (BC) made from orange peels at ratios of 5, 10, and 15(Phr) to evaluate how the filler content affected the mechanical, thermal, optical, electrical conductivity, and electromagnetic interference (EMI). γ-rays was applied to the prepared specimens to assess how radiation affected the created biocomposites. From the obtained results, the combination of BC with γ-rays, at doses of up to 100 kGy, with thermoplastic resulted in an enhanced mechanical property, particularly for composites containing 15 Phr of BC added because of its unique structure and excellent dispersion.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Fayoum University, Fayoum, Egypt.
For the purpose of this study, four natural rock samples-namely, diorite, granodiorite, tonalite, and granite-are being investigated about their radiation attenuation. The elemental composition of the rocks was obtained through Energy dispersive X-ray spectroscopy (EDX) which examines the microstructural and localized area elemental analyses of the four rock samples. A Monte Carlo simulation (MCNP) was used to determine and evaluate the investigated samples.
View Article and Find Full Text PDFPhys Med Biol
January 2025
National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, JAPAN.
PET has become an important clinical modality but is limited to imaging positron emitters. Recently, PET imaging withZr, which has a half-life of 3 days, has attracted much attention in immuno-PET to visualize immune cells and cancer cells by targeting specific antibodies on the cell surface. However,Zr emits a single gamma ray at 909 keV four times more frequently than positrons, causing image quality degradation in conventional PET.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.
Purpose: Ionizing radiation (IR) could induce damage such as DNA damage and oxidative stress. Natural products, like tea, have been demonstrated potential in mitigating these damages. However, the lack of efficient and rapid screening methods for natural products hinders their widespread application.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal.
Purpose: Cowpea ( (L.) Walp.) is a major legume crops for human consumption and livestock feed in tropical regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!