Carbohydrate fuel cells garner much research interest as the world's focus shifts from fossil fuels to renewable energy. Many catalyst options are available for carbohydrate fuel cell development, including enzymes and microbes, various metal-based catalysts, and natural or synthetic mediators. Research challenges include low power output, system fouling and poisoning, inefficient electron release, and complex mechanisms, with multiple pathways leading to low product selectivity. Here, we further investigate a novel approach to catalyze carbohydrate oxidation using Au electrodes with viologen self-assembled monolayers (SAMs). SAM-mediated fuel cells have the potential to address the challenges of other catalyst systems by protecting the electrode surface and controlling the local concentration and structure to increase current generation. The effects of increasing pH on dihydroxyacetone (DHA) oxidation by three viologen SAMs on Au electrodes are presented. Current and power generated during DHA oxidation at varying pH were measured and compared to those of bare Au performance. Two of the SAMs produced more current and power than bare Au at elevated pH. The SAM system produced more current and peak power per molecule than both dilute and concentrated homogeneous viologen systems in the same cell setup. These results demonstrate the benefits and limitations of electrodes modified with redox-active groups for the production of electricity from simple sugars and other carbohydrate sources. These results are encouraging for the development of new strategies for electrical power generation from renewable resources.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c02379DOI Listing

Publication Analysis

Top Keywords

viologen self-assembled
8
self-assembled monolayers
8
carbohydrate fuel
8
fuel cells
8
dha oxidation
8
current power
8
produced current
8
power
5
dependence dihydroxyacetone
4
oxidation
4

Similar Publications

pH responsive self-assembled supramolecular systems in water hold tremendous promise spanning across the various realms of science and technology. Herein, we report the design and synthesis of benzyl viologen (BV) based amphiphiles and their ability to form pH responsive aggregates with a water soluble anionic dye (electron donor), a polyelectrolyte (PE), and a surfactant. To counter the low solubility of viologen derivatives, β-cyclodextrin (β-CD) was employed as a solubility promoter and the host-guest complexes were characterized by NMR spectroscopy.

View Article and Find Full Text PDF

Carbohydrate fuel cells garner much research interest as the world's focus shifts from fossil fuels to renewable energy. Many catalyst options are available for carbohydrate fuel cell development, including enzymes and microbes, various metal-based catalysts, and natural or synthetic mediators. Research challenges include low power output, system fouling and poisoning, inefficient electron release, and complex mechanisms, with multiple pathways leading to low product selectivity.

View Article and Find Full Text PDF

Multi-stimuli-responsive chromic materials have immense potential for utilization. Herein, two supramolecular inclusion complexes were prepared by self-assembly of β-cyclodextrin (β-CD) with dialkylcarboxyl-substituted viologens, '-di(3-carboxy-propyl)-4,4'-bipyridinium dichloride (CPV·Cl) and '-di(6-carboxy-hexyl)-4,4'-bipyridinium dibromide (CHV·Br). The self-assembled inclusion complexes CPV@β-CD and CHV@β-CD in the solid-state exhibited naked-eye photochromism, thermochromism, and electrochromism in response to multiple external stimuli including light, temperature, and electric field, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding how viologen salts can form organized networks on surfaces is important because of their special electronic characteristics.!
  • Researchers are using solid-state NMR spectroscopy combined with atomic force microscopy to study these networks at room temperature.!
  • This approach allows scientists to explore how the arrangement of ions affects the overall structure of the network on a graphitic surface.!
View Article and Find Full Text PDF

Large area arrays of discrete single-molecule junctions derived from host-guest complexes.

Nanoscale

January 2024

Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain.

The desire to continually reduce the lower limits of semiconductor integrated circuit (IC) fabrication methods continues to inspire interest in unimolecular electronics as a platform technology for the realization of future (opto)electronic devices. However, despite successes in developing methods for the construction and measurement of single-molecule and large-area molecular junctions, exercising control over the precise junction geometry remains a significant challenge. Here, host-guest complexes of the wire-like viologen derivative 1,1'-bis(4-(methylthio)-phenyl)-[4,4'-bipyridine]-1,1'-diium chloride ([1][Cl]) and cucurbit[7]uril (CB[7]) have been self-assembled in a regular pattern over a gold substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!