Controlling the redox states of single-walled carbon nanotubes (SWNTs) is important for the optimization of their real performances in various fields. By means of in situ photoluminescence (PL) spectroelectrochemical measurements, we report a successful modulation for the redox parameters (redox potentials and electrochemical band gap) of (6,5) and (7,5)SWNTs with a simple change in conjugated polymers (CPs) non-covalently wrapped on the nanotubes. The large shift in the band gap (187 meV for (6,5)SWNTs and 101 meV for (7,5)SWNTs) was connected to the prominent difference in the interactions between the CPs and SWNTs as suggested by molecular dynamics (MD) simulations, while a striking difference in the π-electrons states of CP/SWNTs enabled the tuning of SWNTs' electronic states. Asymmetrical modulation for the reduction potential (LUMO) and oxidation potential (HOMO) of the SWNTs was observed as well. Our results can be promising for a simple but precise control of the electric states of SWNTs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202400879 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!