A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

How Sophisticated Are Neural Networks Needed to Predict Long-Term Nonadiabatic Dynamics? | LitMetric

Nonadiabatic dynamics is key for understanding solar energy conversion and photochemical processes in condensed phases. This often involves the non-Markovian dynamics of the reduced density matrix in open quantum systems, where knowledge of the system's prior states is necessary to predict its future behavior. In this study, we explore time-series machine learning methods for predicting long-time nonadiabatic dynamics based on short-time input data, comparing these methods with the physics-based transfer tensor method (TTM). To understand the impact of memory time on these approaches, we demonstrate that non-Markovian dynamics can be represented as a linear map within the Nakajima-Zwanzig generalized quantum master equation framework. We further propose a practical method to estimate the effective memory time, within a given tolerance, for reduced density matrix propagation. Our predictive models are applied to various physical systems, including spin-boson models, multistate harmonic (MSH) models with Ohmic spectral densities and for a realistic organic photovoltaic system composed of a carotenoid-porphyrin-fullerene triad dissolved in tetrahydrofuran. Results indicate that the simple linear-mapping fully connected neural network (FCN) outperforms the more complicated nonlinear-mapping networks including the gated recurrent unit (GRU) and the convolutional neural network/long short-term memory (CNN-LSTM) in systems with short memory times, such as spin-boson and MSH models. Conversely, the nonlinear CNN-LSTM and GRU models yield higher accuracy in the triad MSH systems characterized by long memory times. These findings offer valuable insights into the role of effective memory time in non-Markovian quantum dynamics, providing practical guidance for the application of time-series machine learning models to complex chemical systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603613PMC
http://dx.doi.org/10.1021/acs.jctc.4c01223DOI Listing

Publication Analysis

Top Keywords

memory time
12
nonadiabatic dynamics
8
non-markovian dynamics
8
reduced density
8
density matrix
8
time-series machine
8
machine learning
8
effective memory
8
msh models
8
memory times
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!