The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrev.4c00423 | DOI Listing |
Trends Biochem Sci
January 2025
School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China. Electronic address:
Molecular glue degraders (MGDs) represent a unique class of targeted protein degradation (TPD) modalities. By facilitating protein-protein interactions between E3 ubiquitin ligases and neo-substrates, MGDs offer a novel approach to target previously undruggable or insufficiently drugged disease-causing proteins. Here, we present an overview of recently reported MGDs, highlighting their diverse mechanisms, and we discuss mechanism-based strategies to discover new MGDs and neo-substrates.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
Proteolysis-targeting chimeras (PROTACs) are dual-functional molecules composed of a protein of interest (POI) ligand and an E3 ligase ligand connected by a linker, which can recruit POI and E3 ligases simultaneously, thereby inducing the degradation of POI and showing great potential in disease treatment. A challenge in developing PROTACs is the design of linkers and the modification of ligands to establish a multifunctional platform that enhances degradation efficiency and antitumor activity. As a programmable and modifiable nanomaterial, DNA tetrahedron can precisely assemble and selectively recognize molecules and flexibly adjust the distance between molecules, making them ideal linkers.
View Article and Find Full Text PDFRNA Biol
January 2025
Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India.
RNA-focused therapy and diagnostics have been making waves in molecular biology due to the advantages RNA has over DNA; for instance, the ability of RNA to target nearly any genetic component in the cell is a big step in treating disorders. Moreover, RNA-based diagnosis of diseases is only becoming increasingly popular, especially after the COVID-19 pandemic, which brought up the need for cost-effective and efficient diagnosing kits for the vast majority. RNA-based techniques also have close to no risk of genotoxicity and can efficiently target undruggable regions of the cell.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Floriculture Lab, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, (CSIR-IHBT), Palampur, H.P., 176061, India.
Everlastin1 and Everlastin2, potent inhibitors of EPH1, were identified through a wheat cell-free chemical-screening system. This innovative platform enables the development of small molecules that target 'undruggable' transcription factors. By specifically targeting the EPH1 pathway, these inhibitors delay petal senescence, extending the longevity and quality of ornamental flowers.
View Article and Find Full Text PDFACS Nano
December 2024
Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518100, P. R. China.
Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!