A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preprocessed Monomer Interfacial Polymerization for Scalable Fabrication of High-Valent Cluster-Based Metal-Organic Framework Membranes. | LitMetric

Current research on emergent membrane materials with ordered and stable nanoporous structures often overlooks the vital facet of manufacturing scalability. We propose the preprocessed monomer interfacial polymerization (PMIP) strategy for the scalable fabrication of high-valent cluster-based metal-organic framework (MOF) membranes with robust structures. Using a roll-to-roll device on commercial polymer supports, Zr-fum-MOF membranes are continuously processed at room temperature through the PMIP approach. These large-area membranes demonstrate the preeminent hydrogen separation capabilities, boasting an order of magnitude of permeance and a thrice-enhanced selectivity when juxtaposed with conventional polymeric membranes. The obtained PMIP-Zr-fum-MOF membranes possess superior stability in water compared with interfacial polymerization (IP)-processed low-valent metal-ion-based ZIF-8 membranes. Moreover, we have implemented the PMIP strategy's universality to process the other four diverse MOF membranes. The proposal of PMIP significantly advances the scalable fabrication of water-stable high-valent cluster MOF membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c10241DOI Listing

Publication Analysis

Top Keywords

interfacial polymerization
12
scalable fabrication
12
mof membranes
12
membranes
9
preprocessed monomer
8
monomer interfacial
8
fabrication high-valent
8
high-valent cluster-based
8
cluster-based metal-organic
8
metal-organic framework
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!