Dual-Phase Singularity at a Single Incident Angle with Spectral Tunability in Tamm Cavities.

Adv Mater

Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore.

Published: November 2024

The phase singularity, a sudden phase change occurring at the reflection zero is widely explored using various nanophotonic systems such as metamaterials and thin film cavities. Typically, these systems exhibit a single reflection zero with a phase singularity at a specific incident angle, particularly at larger angles of incidence (>50 degrees). However, achieving multiple phase singularities at a single incident angle remains a formidable challenge. Here, the existence of a dual-phase singularity is experimentally demonstrated at a lower incident angle using a tunable Tamm plasmon polariton (TPP) cavity that consists of gold-coated ultralow-loss phase change material SbS-based distributed Bragg reflector. It can excite narrowband TPP resonances from normal incidence to a wide angle of incidence for both s- and p-polarizations of light. Notably, this TPP cavity shows dual-phase singularity at lower angles of incidence since the excited TPP for s- and p-polarizations exhibits zero reflection at slightly different wavelengths for the same incident angle. A TPP cavity-based scalable hydrogen sensor is proposed and shows that the dual-phase singularity can further improve the sensitivity of singular phase-based sensing approaches. Moreover, spectrally tunable dual-phase singularity is experimentally demonstrated at a lower incident angle using a metal-free Tamm cavity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202408098DOI Listing

Publication Analysis

Top Keywords

incident angle
24
dual-phase singularity
20
single incident
8
phase singularity
8
phase change
8
angles incidence
8
singularity experimentally
8
experimentally demonstrated
8
demonstrated lower
8
lower incident
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!