Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The capability of the transition from skotomorphogenesis-to-photomorphogenesis (de-etiolation) is requisite for seedling survival and development. However, how carbohydrate in germinating seeds controls seedling de-etiolation remains unclear. Mu et al. (2022) investigated the regulatory roles of soluble sugars (such as, glucose or sucrose) on de-etiolation during the transition from skotomorphogenesis-to-photomorphogenesis. The authors revealed that in the dark, sucrose/glucose in germinating seeds induces ethylene production/signaling. Ethylene signaling promotes the stability of EIN3 (ETHYLENE-INSENSITIVE3), a key component in the ethylene signaling pathway. In turn, EIN3 directly binds to the promoter of (), encoding a major sucrose transporter, to repress transcription. The resulting phloem loading of sucrose is blocked, and thereby the accumulation of sucrose is elevated in etiolated seedling cotyledons. When exposed to light irradiation, accumulated sucrose/glucose inducing ethylene elevates the stability of EIN3, repressing (encoding the photoreceptor of a far-red light/the inhibitor of a cotyledon greening) expression to promote de-etiolation. In this study, we mainly discuss the findings (low sugars promote de-etiolation) of Mu et al. (2021) and further find that excess sugars inhibit de-etiolation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572307 | PMC |
http://dx.doi.org/10.1080/15592324.2023.2191465 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!