Azaindole: A Candidate Anchor for Regulating Charge Polarity and Inducing Resonance Transmission at the Fermi Level via Dehydrogenation.

J Phys Chem A

Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.

Published: November 2024

Tuning the polarity of charge carriers is essential for designing molecular logic devices in molecular electronics. In this study, the electrical transport properties of a family of azaindole-anchored single-molecule junctions have been investigated using density functional theory combined with the nonequilibrium Green's function method. The obtained results reveal that dehydrogenation is an effective method for reversing the polarity of charge carriers. The molecular junctions based on the entire azaindole unit are n-type and contain electrons as the principal charge carriers, whereas the dehydrogenated junctions are p-type and contain holes as the main carriers. Furthermore, the azaindole anchors undergo a transition from an electron-rich to an electron-deficient state due to dehydrogenation, which is the original cause of the charge carrier polarity conversion. Dehydrogenated molecular junctions also exhibit the Fermi pinning effect and a sharp highest occupied molecular orbital (HOMO) resonance peak at the Fermi level. In addition, using Pt electrodes instead of Au electrodes is a means of producing a HOMO resonance peak a for azaindole-based molecular junctions. This work demonstrates the enormous potential of utilizing azaindole-anchored molecular junctions for the implementation of molecular logic and multifunctional molecular devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c05203DOI Listing

Publication Analysis

Top Keywords

molecular junctions
16
charge carriers
12
molecular
9
fermi level
8
polarity charge
8
molecular logic
8
homo resonance
8
resonance peak
8
junctions
6
charge
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!