Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Depression, a common and high-morbidity mental illness, can cause severe physical and psychiatric disorder. Recently, elevated levels of reactive oxygen and nitrogen species (RONS) have been recognized as a potential pathogenesis of depression. Unfortunately, available therapies provide limited outcomes in treating RONS-related depression symptoms. In addition, the low blood-brain barrier (BBB) penetration efficiency of some drugs is another major barrier to depression treatment. This study developed cerium oxide-modified Pd (Pd-CeO) nanosheets with outstanding antioxidant activities for depression therapy. Under physiological conditions, Pd-CeO exhibited significant O˙ and HO clearance through their superoxide dismutase (SOD) and catalase (CAT) activities. Meanwhile, Pd-CeO also displayed the ability to scavenge ˙OH and reactive nitrogen radicals (RNS). What's more, when incorporated with biocompatible red blood cell (RBC) membranes, Pd-CeO@RBC could overcome the BBB and protect brain tissues from oxidative damage caused by RONS. As a result, Pd-CeO@RBC therapy reduced the proliferation of microglia and astrocytes and alleviated neuroinflammation and depression-like behaviors. This research not only provides a novel strategy for the effective treatment of depression, but also paves the way for new therapeutic options of nanozymes in neurological disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr03410d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!