A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Real-time crop row detection using computer vision- application in agricultural robots. | LitMetric

Real-time crop row detection using computer vision- application in agricultural robots.

Front Artif Intell

Mechatronics and Autonomous Research Lab, Purdue University, Mechanical Engineering, Indianapolis, IN, United States.

Published: October 2024

The goal of achieving autonomous navigation for agricultural robots poses significant challenges, mostly arising from the substantial natural variations in crop row images as a result of weather conditions and the growth stages of crops. The processing of the detection algorithm also must be significantly low for real-time applications. In order to address the aforementioned requirements, we propose a crop row detection algorithm that has the following features: Firstly, a projective transformation is applied to transform the camera view and a color-based segmentation is employed to distinguish crop and weed from the background. Secondly, a clustering algorithm is used to differentiate between the crop and weed pixels. Lastly, a robust line-fitting approach is implemented to detect crop rows. The proposed algorithm is evaluated throughout a diverse range of scenarios, and its efficacy is assessed in comparison to four distinct existing solutions. The algorithm achieves an overall intersection over union (IOU) of 0.73 and exhibits robustness in challenging scenarios with high weed growth. The experiments conducted on real-time video featuring challenging scenarios show that our proposed algorithm exhibits a detection accuracy of over 90% and is a viable option for real-time implementation. With the high accuracy and low inference time, the proposed methodology offers a viable solution for autonomous navigation of agricultural robots in a crop field without damaging the crop and thus can serve as a foundation for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558879PMC
http://dx.doi.org/10.3389/frai.2024.1435686DOI Listing

Publication Analysis

Top Keywords

crop row
12
agricultural robots
12
row detection
8
autonomous navigation
8
navigation agricultural
8
detection algorithm
8
crop weed
8
proposed algorithm
8
challenging scenarios
8
crop
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!