Surfactants are amphiphilic molecules that adsorb to interfaces and affect the interfacial tension. Surfactants in seawater can impact gas-exchange, surface properties, and the composition and fate of sea spray aerosol. The accurate quantification of surfactants and their classes is crucial to constraining the effect of surfactants in seawater and their role in air-sea exchanges. Here, we evaluate and optimize a solid phase extraction (SPE) method paired with colorimetry and UV-vis spectroscopy to quantify the concentrations of anionic, cationic, and nonionic surfactants in seawater. We compare tandem SPE with two-step SPE and different elution volumes and evaluate the impact of different interferents. Improved extraction efficiencies were obtained with an 8 mL acetonitrile elution and with separate ENVI-18 and ENVI-Carb extractions, instead of tandem. With complex surfactant mixtures, the presence of anionic surfactants interfered with the quantification of cationic surfactants and caused underestimations of up to 83%. Using a two-step extraction and analyzing each seawater SPE extract separately during colorimetric quantification help avoid the effects of interferents and ensure more representative quantification of surfactants. With this method, average seawater surfactant concentrations ranged from 0.04 to 0.06 μM. At the highest concentrations, the class composition comprised 23% anionic, 21% cationic, and 56% nonionic surfactants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555682PMC
http://dx.doi.org/10.1021/acsestwater.4c00497DOI Listing

Publication Analysis

Top Keywords

surfactants seawater
16
surfactants
10
solid phase
8
phase extraction
8
quantification surfactants
8
nonionic surfactants
8
seawater
6
quantification
5
evaluating extraction
4
extraction quantification
4

Similar Publications

Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.

View Article and Find Full Text PDF

Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.

Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.

View Article and Find Full Text PDF

This study investigates the development of a novel CO-foamed viscoelastic gel-based fracturing fluid to address the challenges of high-temperature formations. The influence of various parameters, including surfactant type and concentration, gas fraction, shear rate, water salinity, temperature, and pressure, on foam viscosity was systematically explored. Rheological experiments were conducted using a high-pressure/high-temperature (HPHT) rheometer at 150 °C and pressures ranging from 6.

View Article and Find Full Text PDF

Surfactants are amphiphilic molecules that adsorb to interfaces and affect the interfacial tension. Surfactants in seawater can impact gas-exchange, surface properties, and the composition and fate of sea spray aerosol. The accurate quantification of surfactants and their classes is crucial to constraining the effect of surfactants in seawater and their role in air-sea exchanges.

View Article and Find Full Text PDF

Ocean waves are significantly damped by biogenic surfactants, which accumulate at the sea surface in every ocean basin. The growth, development, and breaking of short wind-driven surface waves are key mediators of the air-sea exchange of momentum, heat and trace gases. The mechanisms through which surfactants suppress waves have been studied in great detail through careful laboratory experimentation in quasi-one-dimensional wave tanks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!