Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: The condition of gastrointestinal tract determines in many respects the regenerative capacity and the risk of complications in patients with extensive skin burns. However, the mechanism of developing vascular dysfunction in the colon in the burned individuals has so far been poorly studied. is to study intramural circulatory disorders of the colon using optical coherence tomography angiography (OCTA) and laser Doppler flowmetry (LDF) in different time periods after modeling a thermal burn.
Materials And Methods: A deep thermal skin burn was induced on the area covering 10% of the body surface of Wistar rats (n=15). The blood flow of the colon wall was continuously monitored for 15 min before and 45 min after the burn using OCTA and LDF. The colon wall was again studied on days 7 and 14 using the same OCTA and LDF techniques. At each time point (45 min, day 7 and 14), 5 animals were withdrawn from the experiment, the colon wall was taken for histological study. The colon wall samples from three control rats without thermal skin burns were also histologically investigated.
Results: During 45 min after the induction of the thermal burn, the OCTA and LDF techniques registered changes in intramural blood flow in the form of dropping of some arterioles and capillaries out of the general blood flow with concurrent activation of vascular shunts as a compensatory mechanism. Histologically, a marked edema of the submucosa, erythrocyte aggregation, and stasis in the capillary network were observed in this period. According to the OCTA and LDF data, the microcirculatory disorders in the colon were partially resolved by day 7, and by day 14 the analyzed indicators returned to the initial level. The data of the histological evaluation have shown that on day 7 after the burn induction, submucosal edema was absent, however, the signs of microcirculatory disorder and inflammatory changes remained. On day 14, the pathological changes in the tissues were not observed.
Conclusion: The OCTA and LDF methods allowed us to establish experimentally that during the first 45 min thermal burn causes considerable disturbances of the blood flow in the colon wall, which normalizes only by day 14 if no therapy is administered. The obtained data on the mechanism of circulatory disorder development in the colon may become a basis for choosing therapy directed to prevention of intestine dysfunction in people with burns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556053 | PMC |
http://dx.doi.org/10.17691/stm2024.16.2.05 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!