A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Subtractive genomics and comparative metabolic pathways profiling revealed novel drug targets in . | LitMetric

Subtractive genomics and comparative metabolic pathways profiling revealed novel drug targets in .

Front Microbiol

Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China.

Published: October 2024

AI Article Synopsis

  • * By using subtractive genomics and metabolic pathway analysis, researchers identified two proteins, B5ZC96 and B5ZAH8, as potential therapeutic targets for Ureaplasma infections.
  • * The discovery of these protein targets is a key step toward developing new treatment strategies that could effectively combat drug-resistant infections, potentially reducing side effects due to their specificity.

Article Abstract

Introduction: is a commensal organism found in the human lower genitourinary tract, which can cause urogenital infections and complications in susceptible individuals. The emergence of antibiotic resistance, coupled with the absence of vaccines, underscores the necessity for new drug targets to effectively treat infections.

Methods: We employed a subtractive genomics approach combined with comparative metabolic pathway analysis to identify novel drug targets against infection. The complete proteomes of 13 Ureaplasma strains were analyzed using various subtractive genomics methods to systematically identify unique proteins. Subsequently, the shortlisted proteins were selected for further structure-based studies.

Results: Our subtractive genomics analysis successfully narrowed down the proteomes of the 13 Ureaplasma strains to two target proteins, B5ZC96 and B5ZAH8. After further in-depth analyses, the results suggested that these two proteins may serve as novel therapeutic targets against infection.

Discussion: The identification of B5ZC96 and B5ZAH8 as novel drug targets marked a significant advancement toward developing new therapeutic strategies against infections. These proteins could serve as foundational elements for the development of lead drug candidates aimed at inhibiting their function, thereby mitigating the risk of drug-resistant infections. The potential to target these proteins without inducing side effects, owing to their specificity to , positions them as promising candidates for further research and development. This study establishes a framework for targeted therapy against , which could be particularly beneficial in the context of escalating antibiotic resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557531PMC
http://dx.doi.org/10.3389/fmicb.2024.1484423DOI Listing

Publication Analysis

Top Keywords

subtractive genomics
16
drug targets
16
novel drug
12
comparative metabolic
8
antibiotic resistance
8
proteomes ureaplasma
8
ureaplasma strains
8
target proteins
8
b5zc96 b5zah8
8
proteins serve
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!