The secondary organic aerosol (SOA) production from the reactions of anthropogenic large volatile (VOCs) and intermediate volatility organic compounds (IVOCs) with hydroxyl radicals under high NO conditions was investigated. The organic compounds studied include cyclic alkanes of increasing size (amylcyclohexane, hexylcyclohexane, nonylcyclohexane, and decylcyclohexane) and aromatic compounds (1,3,5-trimethylbenzene, 1,3,5-triethylbenzene and 1,3,5-tri-butylbenzene). A considerable amount of SOA was formed from all examined compounds. For the studied cyclohexanes (C-C) there appears that the SOA yield depends nonlinearly on the length of their substitute chain. The large cyclohexanes had higher yields than the aromatic compounds, but the aromatic precursors produced a more oxidized SOA. This was due to the production of lower volatility and O:C first generation products by the cyclohexanes. Most oxidation products (with * < 10 μg m) in the case of cyclohexanes are SVOCs (∼50%), while of aromatics are IVOCs (∼60%). Structure, molecular size, and length of the substitute chain of the parent hydrocarbon were found to play key roles in SOA formation, oxidation state, and volatility. The SOA volatility distribution, effective vaporization enthalpy, and effective accommodation coefficient were also quantified by combining SOA yields, thermodenuder (TD) and isothermal dilution measurements. Parameterizations for the Volatility Basis Set (VBS) are proposed for future use in chemical transport models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555633 | PMC |
http://dx.doi.org/10.1021/acsestair.4c00176 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!