Camelina (), an allohexaploid species, is an emerging aviation biofuel crop that has been the focus of resurgent interest in recent decades. To guide future breeding and crop improvement efforts, the community requires a deeper comprehension of subgenome dominance, often noted in allopolyploid species, "alongside an understanding of the genetic diversity" and population structure of material present within breeding programs. We conducted population genetic analyses of a diversity panel, leveraging a new genome, to estimate nucleotide diversity and population structure, and analyzed for patterns of subgenome expression dominance among different organs. Our analyses confirm that has relatively low genetic diversity and show that the SG3 subgenome has substantially lower genetic diversity compared to the other two subgenomes. Despite the low genetic diversity, our analyses identified 13 distinct subpopulations including two distinct wild populations and others putatively representing founders in existing breeding populations. When analyzing for subgenome composition of long non-coding RNAs, which are known to play important roles in (a)biotic stress tolerance, we found that the SG3 subgenome contained significantly more lincRNAs compared to other subgenomes. Similarly, transcriptome analyses revealed that expression dominance of SG3 is not as strong as previously reported and may not be universal across all organ types. From a global analysis, SG3 "was only significant higher expressed" in flower, flower bud, and fruit organs, which is an important discovery given that the crop yield is associated with these organs. Collectively, these results will be valuable for guiding future breeding efforts in camelina.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560372 | PMC |
http://dx.doi.org/10.1093/hr/uhae247 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!