A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

C-reactive protein promotes diabetic kidney disease via Smad3-mediated NLRP3 inflammasome activation. | LitMetric

C-reactive protein promotes diabetic kidney disease via Smad3-mediated NLRP3 inflammasome activation.

Mol Ther

School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China. Electronic address:

Published: November 2024

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney diseases resulting in enormous socio-economic burden. Accumulated evidence has indicated that C-reactive protein (CRP) exacerbates DKD by enhancing renal inflammation and fibrosis through TGF-β/Smad3 signaling. NLRP3 inflammasome is the key sensor contributing to renal inflammation. However, whether CRP enhances inflammation in DKD via NLRP3 inflammasome-related pathway remains unknown. In this study, we demonstrate that CRP promotes DKD via Smad3-mediated NLRP3 inflammasome activation as mice overexpressing human CRP gene exhibits accelerated renal inflammation in diabetic kidneys, which is associated with the activation of Smad3 and NLRP3 inflammasomes. In contrast, blockade of CPR signaling with a neutralizing anti-CD32 antibody attenuates CRP-induced activation of Smad3 and NLRP3 in vitro. Importantly, genetic deletion or pharmacological inhibition of Smad3 also mitigates CRP-induced activation of NLRP3 in diabetic kidneys or in high glucose-treated cells. Mechanistically, we reveal that Smad3 binds to the NLRP3 gene promoter, which is enhanced by CRP. Taken together, we conclude that CRP induces renal inflammation in DKD via a Smad3-NLRP3 inflammasome-dependent mechanism. Thus, targeting CRP or Smad3-NLRP3 pathways may be a new therapeutic potential for DKD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymthe.2024.11.018DOI Listing

Publication Analysis

Top Keywords

renal inflammation
16
nlrp3 inflammasome
12
c-reactive protein
8
diabetic kidney
8
kidney disease
8
nlrp3
8
smad3-mediated nlrp3
8
inflammasome activation
8
inflammation dkd
8
diabetic kidneys
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!