A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Elaboration and Characterization of Different Zirconium Modified ETS Photocatalysts for the Degradation of Crystal Violet and Methylene Blue. | LitMetric

In this study, Zirconium-modified Engelhard Titanium Silicate 4 (Na-K-ETS-4/xZr) catalysts were synthesized and evaluated for their photocatalytic efficiency in degrading crystal violet (CV) and methylene blue (MB) in aqueous solutions. The catalysts were characterized using XRD, FTIR, SEM, WDXRF, and nitrogen adsorption/desorption isotherms. The results confirmed the successful incorporation of Zr into the ETS-4 framework, with the highest Zr content reaching 9.2 wt %. The photocatalytic performance under visible light irradiation was studied at varying pH levels. The Na-K-ETS-4/6.3Zr catalyst exhibited the highest photodegradation efficiency for CV (76.6 %), while Na-K-ETS-4/8.9Zr achieved 86.6 % efficiency for MB. A combination of Engelhard Titanium Silicate 10, Na-K-ETS-10/6.3Zr and Na-K-ETS-4/8.9Zr significantly enhanced dye degradation, achieving up to 96.5 % efficiency for MB. Kinetic studies indicated that the degradation process follows a non-linear pseudo-first-order model. The catalysts also demonstrated excellent reusability, with minimal efficiency loss after five cycles, and full recovery after an ethanol wash. These findings suggest that Na-K-ETS-4/xZr is a promising candidate for environmental water treatment applications due to its efficient photodegradation performance and stability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/open.202400348DOI Listing

Publication Analysis

Top Keywords

crystal violet
8
violet methylene
8
methylene blue
8
engelhard titanium
8
titanium silicate
8
efficiency
5
elaboration characterization
4
characterization zirconium
4
zirconium modified
4
modified ets
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!