A vector magnetic field sensor based on a ferrofluid-encapsulated coreless D-shaped fiber is proposed and demonstrated. The core of the singlemode fiber (SMF) is completely removed by fiber polishing technology, and the remaining part transformed into a multimode interference (MMI) waveguide. The exposed side-polishing plane enable the evanescent field to interact with surrounding magnetic fluid (MF). Relying on the non-circularly symmetric geometry of the coreless D-shaped fiber and the MF refractive index modulation by the orientation and intensity of the applied magnetic field, vector magnetic field sensing is achieved. The magnetic field response characteristics of the coreless D-shaped fibers with different residual thicknesses (RTs) are investigated. The experimental results show that a reduced RT yields enhanced sensitivity, and the magnetic field intensity sensitivity reaches -0.231 nm/mT and -0.483 dB/mT at a RT of 42.7 µm. The developed coreless D-shaped fiber sensor exclusively utilizes SMF, thereby offering a cost-effective scheme for the fabrication of vector magnetic field sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.530672DOI Listing

Publication Analysis

Top Keywords

magnetic field
28
coreless d-shaped
20
vector magnetic
16
d-shaped fiber
16
field
8
field sensor
8
sensor based
8
magnetic
8
magnetic fluid
8
fiber
6

Similar Publications

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.

View Article and Find Full Text PDF

Cine-magnetic resonance imaging (MRI) has been used to track respiratory-induced motion of the liver and tumor and assist in the accurate delineation of tumor volume. Recent developments in compressed sensitivity encoding (SENSE; CS) have accelerated temporal resolution while maintaining contrast resolution. This study aimed to develop and assess hepatobiliary phase (HBP) cine-MRI scans using CS.

View Article and Find Full Text PDF

Magnetorheological (MR) fluids can be utilized in one of the fundamental operating modes of which the gradient pinch mode has been the least explored. In this unique mode non-uniform magnetic field distributions are taken advantage of to develop a so-called Venturi-like contraction in MR fluids. By adequately directing magnetic flux the material can be made solidified in the regions near the flow channel wall, thus creating a passage in the middle of the channel for the fluid to pass through.

View Article and Find Full Text PDF

This study investigates the optical properties of carbon nanotubes (CNTs) and silicene nanotubes (SiNTs) under the influence of external magnetic fields, focusing on their linear and nonlinear optical responses. A tight-binding model is employed to analyze the effects of magnetic fields on the electronic band structure, dipole matrix elements, and various optical susceptibilities of zigzag CNTs and SiNTs. The results reveal significant magnetic field-induced modifications in both linear and nonlinear optical spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!