Optoelectronic tweezers (OETs) represent a flexible, high-throughput method for manipulating micro/nano particles or cells. This technique involves not only light-actuated dielectrophoresis (LDEP) but also light-actuated AC electroosmosis (LACE), which occurs concurrently in OETs devices. Despite this, the combination of negative LDEP and LACE has been relatively unexplored in previous research. To this end, particle equilibrium in OETs devices under the combined influence of negative LDEP and LACE was hereby proposed for what we believe is the first time. The findings revealed that particles experiencing negative dielectrophoresis encountered opposing forces from LDEP and LACE, reaching equilibrium near the light pattern. The location of the equilibrium point was frequency-dependent. The research further demonstrated the rapid differentiation between individual particles and adherent particles by leveraging the distinct equilibrium point positions. These phenomena were corroborated through numerical simulations, which showed a strong correlation between the theoretical analysis results and the experimental data. Overall, the particle equilibrium phenomenon in OET systems exhibits high stability and holds promising potential for future applications in particle or cell sorting and patterning two-dimensional structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.523241 | DOI Listing |
Gels
November 2024
Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
A recrosslinkable CO-resistant branched preformed particle gel (CO-BRPPG) was developed for controlling CO injection conformance, particularly in reservoirs with super-permeable channels. Previous work focused on a millimeter-sized CO-BRPPG in open fractures, but its performance in high-permeability channels with pore throat networks remained unexplored. This study used a sandpack model to evaluate a micro-sized CO-BRPPG under varying conditions of salinity, gel concentration, and pH.
View Article and Find Full Text PDFFood Chem
December 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China. Electronic address:
Grape seed anthocyanins (GSA) offer health benefits and protect against diseases, including colitis. Its unpleasant smell and instability prevent widespread application. Antisolvent pretreatment GSA was encapsulated in chitosan-phytic acid 3D gel network.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Department "Area Materno-Infantile" Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan Italy.
Gravitational Field-Flow Fractionation (GrFFF) is an elution-based method designed for the separation of particles ranging from a few micrometers up to approximately 100 μm in diameter. Separation occurs over time, with particles being fractionated based on size and other physico-chemical properties. GrFFF takes advantage of gravitational forces acting perpendicularly to a laminar flow in a thin channel.
View Article and Find Full Text PDFIn this Letter, we have proposed an all-optical scheme for chiral particle separation with a microcylinder-pair system (MCPS) with a micrometer scale channel, applicable in microfluidic environments. By illuminating the MCPS with two counter-incident plane waves of orthogonal polarization, the electromagnetic chirality gradient can be generated. The MCPS can also enhance chirality-dependent lateral optical forces of the coupled fields so that the setup can shift trapping equilibrium positions for opposite-handedness nanoparticles and make the sideways motion observable.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9.
We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!