Photonic reservoir computing has been used to efficiently solve difficult and time-consuming problems. The physical implementations of such reservoirs offer low power consumption and fast processing speed due to their photonic nature. In this paper, we investigate the computational capacity of a passive spatially distributed reservoir computing system. It consists of a network of waveguides connected via optical splitters and combiners. A limitation of its reservoir is that it is fully linear and that the nonlinearity - which is often required for solving computing tasks - is only introduced in the output layer. To address this issue, we investigate the incorporation of an additional active nonlinear component into the system. Our approach involves the integration of a single semiconductor laser in an external optical delay line within the architecture. Based on numerical simulations, we show that the architecture with this semiconductor laser has a nonlinear computational capacity that is significantly increased as compared to the original passive architecture, which can be beneficial to solving difficult computational tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.518654DOI Listing

Publication Analysis

Top Keywords

semiconductor laser
12
computational capacity
12
photonic reservoir
8
nonlinear computational
8
reservoir computing
8
combining passive
4
passive spatial
4
spatial photonic
4
reservoir
4
reservoir computer
4

Similar Publications

Electronically Controlled Dual-Wavelength Switchable SRS Fiber Amplifier in the NIR-II Region for Multispectral Photoacoustic Microscopy.

Laser Photon Rev

October 2024

Harvard Medical School, Boston, MA 02114, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Cardiology, Erasmus Medical Center, Rotterdam GD3015, The Netherlands; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

Photoacoustic microscopy (PAM) is a high-resolution and non-invasive imaging modality that provides optical absorption contrast. By employing dual- or multiple-wavelength excitation, PAM extends its capabilities to offer valuable spectroscopic information. To achieve efficient multispectral PAM imaging, an essential requirement is a light source characterized by a high repetition rate and switching rate, a ≈microjoule pulse energy, and a ≈nanosecond pulse duration.

View Article and Find Full Text PDF

Holographically designed aperiodic lattices (ALs) have proven to be an exciting engineering technique for achieving electrically switchable single- or multi-frequency emissions in terahertz (THz) semiconductor lasers. Here, we employ the nonlinear transfer matrix modeling method to investigate multi-wavelength nonlinear (sum- or difference-) frequency generation within an integrated THz (idler) laser cavity that also supports optical (pump and signal) waves. The laser cavity includes an aperiodic lattice, which engineers the idler photon lifetimes and effective refractive indices.

View Article and Find Full Text PDF

An ultra-narrow-linewidth laser is a core device in fields such as optical atomic clocks, quantum communications, and microwave photonic oscillators. This paper reports an ultra-narrow-linewidth self-injection locked semiconductor laser, which is realized through optical feedback from a high-Q (258 million) Fabry-Perot (FP) cavity constructed with three mirrors, generating an output power of 12 mW. Employing a delay self-heterodyne method based on a signal source analyzer, the phase noise of the laser is -129 dBc/Hz at 100 kHz offset frequency, with an intrinsic linewidth of 3 mHz.

View Article and Find Full Text PDF

Canard cascading (CC) is observed in dynamical networks with global adaptive coupling. It is a slow-fast phenomenon characterized by a recurrent sequence of fast transitions between distinct and slowly evolving quasistationary states. In this Letter, we uncover the dynamical mechanisms behind CC, using an illustrative example of globally and adaptively coupled semiconductor lasers, where CC represents sequential switching on and off the lasers.

View Article and Find Full Text PDF

Near-Infrared Organic Small-Molecule Photosensitizer With O Self-Supply for Cancer Photodynamic-Photothermal Synergistic Therapy.

Small

December 2024

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.

Tumor hypoxia and heat resistance as well as the light penetration deficiency severely compromise the phototherapeutic efficacy, developing phototherapeutic agents to overcome these issues has been sought-after goal. Herein, a diradical-featured organic small-molecule semiconductor, namely TTD-CN, has been designed to show low exciton binding energy of 42 meV by unique dimeric π-π aggregation, promoting near-infrared (NIR) absorption beyond 808 nm and effective photo-induced charge separation. More interestingly, its redox potentials are tactfully manipulated for water splitting to produce O and reduction of O to generate O .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!