Precision glass molding (PGM) technology, as an effective method for mass-producing glass lenses, is relatively mature in the molding process of aspheric lenses, but the glass molding technology for freeform optical elements is still in its infancy. For freeform optical elements, processing by conventional ultra-precision methods requires multiple processes and the resulting costs are high, while processing by PGM is efficient and inexpensive. Therefore, this paper investigates the molding technology of freeform lenses, the pre-compensation model of the freeform mold core is established, and predicts the residual stresses of freeform lenses after molding by the finite element method. Three different process parameters, molding temperature, molding rate and molding force, are verified. Experimental and simulation results show that the trends of residual stresses for the three process parameters are consistent. The optimal process parameters of the molding process are determined, under which the PV value of the molding lens is around 1.5µm. The experimental results show that the PV value of the molded lens is reduced to less than 1µm after using the pre-compensated mold core, which proves the validity of the pre-compensated model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.525414 | DOI Listing |
Lab Chip
December 2024
Laboratory of Cell Biology and Histology, Faculty of Biomedical, Pharmaceutical and Veterinary sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium.
Modern cell and developmental biology increasingly relies on 3D cell culture systems such as organoids. However, routine interrogation with microscopy is often hindered by tedious, non-standardized sample mounting, limiting throughput. To address these bottlenecks, we have developed a pipeline for imaging intact organoids in flow, utilizing a transparent agarose fluidic chip that enables efficient and consistent recordings with theoretically unlimited throughput.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), CONICET/UNMdP, Av. Colón 10850, B7606BWV, Mar del Plata, Argentina.
This study addresses the extension of the service life of carbon-fiber reinforced epoxies by inducing thermal healing of microcracks through the use of a vitrimer as a polymeric matrix. Our aim was to explore the feasibility of using a blend of selected carboxylic acids (citric, glutaric, and sebacic acids) and commercial monomers to design a matrix specifically developed for technological implementation in composites with the ability of intrinsic repair of microcracks under moderate (even remote) heating treatments. The selection of the formulation (the acid blend, catalysts, and monomers) was the result of an exhaustive prescreening analysis of processing requisites and final properties.
View Article and Find Full Text PDFPlant Dis
December 2024
INRAE Centre Bourgogne-Franche-Comté, 17 rue Sully, Dijon, France, 21000;
Root rot affects legumes such as lentil (Lens culinaris subsp. culinaris Medik.) and pea (Pisum sativum L.
View Article and Find Full Text PDFPlant Dis
December 2024
Maize Research Institute, Phytopathology, Belgrade, Serbia;
Fusarium graminearum species complex (FGSC) includes at least fifteen species which are some of the most significant fungi that infect maize in temperate areas (Sarver et al. 2011). Agroecological conditions in Serbia are suitable for the development of infection by members of FGSC and therefore during the period of 1993-2010, maize samples collected from northern Serbia (46°5'55" N, 19°39'47" E) showed typical symptoms of gibberella ear rot.
View Article and Find Full Text PDFDent Mater
December 2024
Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, UK; Photon Science Institute, University of Manchester, Manchester, UK. Electronic address:
Objective: Zinc oxide (ZnO) powder possesses antibacterial activity and although white in color, it can severely reduce the depth of cure (DoC) of resin-based composite (RBC). This study investigated the effect of unary and binary photoinitiator systems on the DoC and degree of conversion (DC) of formulated RBC containing ZnO-nanoparticles.
Methods: Fourteen RBCs (n = 3/group) were formulated consisting of 50 wt% mixture of monomers (Bis-GMA, TEGDMA, and UDMA) and 50 wt% fillers (inert barium glass powder and silica nanoparticles).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!