Research has shown that free-space laser communication systems may experience fewer outages due to atmospheric impairments such as haze, fog, clouds, and turbulence by operating at a longer wavelength in the mid-wave or long-wave infrared, if disadvantages such as lower-performance transceiver components may be overcome. Here we report a resonant cavity infrared detector (RCID) with 4.6-µm resonance wavelength that enables 20-dB larger link budget than has been reported previously for ∼ 5 Gb/s operation. The device combines high responsivity, 1.97 A/W, with a low noise equivalent power (NEP) of 0.7 pW/ at room temperature, and a high bandwidth of 6.7 GHz at 3-dB. The relatively large surface-normal-incidence device with 30-µm diameter simplifies the coupling relative to intra-subband quantum cascade detectors. Although the RCID NEP is expected to increase with frequency to ∼ 1.5 pW/ , we estimate that the total equivalent noise power in a 2.5-GHz bandwidth is less than 200 nW. When combined with a relatively high power (∼100-mW) distributed-feedback quantum cascade laser, the difference of > 50 dB between modulated laser power and RCID noise significantly outpaces that of existing devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.523190DOI Listing

Publication Analysis

Top Keywords

free-space laser
8
laser communication
8
infrared detector
8
detector rcid
8
quantum cascade
8
laser
5
multi-gb/s free-space
4
communication 46-μm
4
46-μm wavelength
4
wavelength high-speed
4

Similar Publications

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

In this paper, we demonstrated a novel bidirectional high-speed transmission system integrating a free-space optical (FSO) communication with a 5G wireless link, utilizing a high-power erbium-doped fibre amplifier (EDFA) for enhanced loss compensation. The system supports downlink rates of 1-Gb/s/4.5-GHz and 10-Gb/s at 24-GHz and 39-GHz, and an uplink rate of 10-Gb/s/28-GHz.

View Article and Find Full Text PDF

The ultimate limit for laser miniaturization would be achieving lasing action in the lowest-order cavity mode within a device volume of ≤(λ/2n), where λ is the free-space wavelength and n is the refractive index. Here we highlight the equivalence of localized surface plasmons and surface plasmon polaritons within resonant systems, introducing nanolasers that oscillate in the lowest-order localized surface plasmon or, equivalently, half-cycle surface plasmon polariton. These diffraction-limited single-mode emitters, ranging in size from 170 to 280 nm, harness strong coupling between gold and InGaAsP in the near-infrared (λ = 1,000-1,460 nm), away from the surface plasmon frequency.

View Article and Find Full Text PDF

An MRI-guided stereotactic neurosurgical robotic system for semi-enclosed head coils.

J Robot Surg

December 2024

National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China.

Magnetic resonance imaging (MRI) offers high-quality soft tissue imaging without radiation exposure, which allows stereotactic techniques to significantly improve outcomes in cranial surgeries, particularly in deep brain stimulation (DBS) procedures. However, conventional stereotactic neurosurgeries often rely on mechanical stereotactic head frames and preoperative imaging, leading to suboptimal results due to the invisibility and the contact with patient's head, which may cause additional harm. This paper presents a frameless, MRI-guided stereotactic neurosurgical robotic system.

View Article and Find Full Text PDF

Optical binding refers to the light-induced interaction between two or more objects illuminated by laser fields. The high tunability of the strength, sign, and reciprocity of this interaction renders it highly attractive for controlling nanoscale mechanical motion. Here, we discuss the quantum theory of optical binding and identify unique signatures of this interaction in the quantum regime.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!