Compared to Nd: YAG lasers, Nd-doped fiber lasers offer superior beam quality, compactness, and heat dissipation, especially in generating single-frequency lasers, which holds great promise for applications in optical atomic clocks, quantum computing, and high-precision bio-photonic imaging. In this study, theoretical simulations of the local environment and experimental analyses on the luminescent characteristics of what we believe to be a novel Nd-doped fluoro-sulfo-phosphate (FSP) laser glass were performed to mitigate the concentration and hydroxyl quenching effects. Based on that, a highly Nd-doped (4 mol%) FSP fiber with a large emission cross-section (3.24 × 10 cm), wide bandwidth (33.7 nm), long lifetime (354 µs), and high gain coefficient (4.24 dB/cm) was designed. Utilizing this fiber, a 1065 nm SFFL with a low pump threshold of 18 mW, a narrow linewidth of 6.5 kHz, and a 0.9 µm compact all-fiber laser were demonstrated, highlighting the potential of Nd-doped FSP fiber in high-performance fiber lasers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.530598DOI Listing

Publication Analysis

Top Keywords

all-fiber laser
8
nd-doped fluoro-sulfo-phosphate
8
fiber lasers
8
fsp fiber
8
fiber
6
nd-doped
5
kilohertz-linewidth low-threshold
4
low-threshold single-frequency
4
single-frequency all-fiber
4
laser utilizing
4

Similar Publications

Electronically Controlled Dual-Wavelength Switchable SRS Fiber Amplifier in the NIR-II Region for Multispectral Photoacoustic Microscopy.

Laser Photon Rev

October 2024

Harvard Medical School, Boston, MA 02114, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Cardiology, Erasmus Medical Center, Rotterdam GD3015, The Netherlands; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

Photoacoustic microscopy (PAM) is a high-resolution and non-invasive imaging modality that provides optical absorption contrast. By employing dual- or multiple-wavelength excitation, PAM extends its capabilities to offer valuable spectroscopic information. To achieve efficient multispectral PAM imaging, an essential requirement is a light source characterized by a high repetition rate and switching rate, a ≈microjoule pulse energy, and a ≈nanosecond pulse duration.

View Article and Find Full Text PDF

In this Letter, we present an all-fiber bismuth (Bi)-doped germanosilicate fiber laser that is continuously tunable within the range of 1425-1475 nm, enabled by a tunable optical filter. A maximum output power of 86.4 mW was achieved at 1450 nm with a slope efficiency of 13.

View Article and Find Full Text PDF

Open-closed single-tube on-beam tuning-fork-enhanced fiber-optic photoacoustic spectroscopy.

Photoacoustics

October 2024

Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center of Next Generation Internet Access-system, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.

A proof-of-concept on-beam tuning-fork-enhanced photoacoustic sensor based on an open-closed single-tube acoustic-microresonator (AmR) was proposed and investigated for the first time, to the best of our knowledge. Due to the high acoustic amplification effect, the open-closed AmR improved the detection sensitivity by 54 times with respect to the bare tuning fork (TF). Compared to traditional dual-tube/single-tube on-beam spectrophone configuration, the developed approach significantly facilitates the laser beam alignment and reduces the sensor size and gas consumption.

View Article and Find Full Text PDF

Femtosecond Laser Introduced Cantilever Beam on Optical Fiber for Vibration Sensing.

Sensors (Basel)

November 2024

Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China.

An all-fiber vibration sensor based on the Fabry-Perot interferometer (FPI) is proposed and experimentally evaluated in this study. The sensor is fabricated by introducing a Fabry-Perot cavity to the single-mode fiber using femtosecond laser ablation. The cavity and the tail act together as a cantilever beam, which can be used as a vibration receiver.

View Article and Find Full Text PDF

We present an all-fiber-based laser gas analyzer (LGA) employing quartz-enhanced photoacoustic spectroscopy (QEPAS) and a side-polished fiber (SPF). The LGA comprises a custom quartz tuning fork (QTF) with 0.8 mm prong spacing, two acoustic micro-resonators (mR) located on either side of the prong spacing, and a single-mode fiber containing a 17 mm polished section passing through both mRs and QTF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!