Based on small-world network theory, we have developed a brain-inspired photonic reservoir computing (RC) network system utilizing quantum dot spin-vertical-cavity surface-emitting lasers (QD spin-VCSELs) and formulated a comprehensive theoretical model for it. This innovative network system comprises input layers, a reservoir network layer, and output layers. The reservoir network layer features four distinct reservoir modules that are asymmetrically coupled. Each module is represented by a QD spin-VCSEL, characterized by optical feedback and optical injection. Within these modules, four chaotic polarization components, emitted from both the ground and excited states of the QD Spin-VCSEL, form four distinct reservoirs through a process of asymmetric coupling. Moreover, these components, when emitted by the ground and excited states of a driving QD spin-VCSEL within a specific parameter space, act as targets for prediction. Delving further, we investigated the correlation between various system parameters, such as the sampling period, the interval between virtual nodes, the strengths of optical injection and feedback, frequency detuning, and the predictive accuracy of each module's four photonic RCs concerning the four designated predictive targets. We also examined how these parameters influence the memory storage capabilities of the four photonics RCs within each module. Our findings indicate that when a module receives coupling injections from more than two other modules, and an RC within this module is also subject to coupling injections from over two other RCs, the system displays reduced predictive errors and enhanced memory storage capacities when the system parameters are fixed. Namely, the superior performance of the reservoir module in predictive accuracy and memory capacities follows from its complex interaction with multiple light injections and coupling injections, with its three various PCs benefiting from three, two, and one coupling injections respectively. Conversely, variations in optical injection and feedback strength, as well as frequency detuning, introduce only marginal fluctuations in the predictive errors across the four photonics RCs within each module and exert minimal impact on the memory storage capacity of individual photonics RCs within the modules. Our investigated results contribute to the development of photonic reservoir computing towards fast response biological neural networks.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.527428DOI Listing

Publication Analysis

Top Keywords

coupling injections
16
reservoir computing
12
optical injection
12
memory storage
12
photonics rcs
12
computing network
8
photonic reservoir
8
network system
8
layers reservoir
8
reservoir network
8

Similar Publications

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF

High molecular weight hyaluronan (HMWH) inhibits hyperalgesia induced by diverse pronociceptive inflammatory mediators and their second messengers, in rats of both sexes. However, the hyperalgesia induced by ligands at 3 pattern recognition receptors, lipopolysaccharide (a toll-like receptor 4 agonist), lipoteichoic acid (a toll-like receptor 2/6 agonist), and nigericin (a NOD-like receptor family, pyrin domain containing 3 activator), and oxaliplatin and paclitaxel chemotherapy-induced peripheral neuropathy are only attenuated in males. After gonadectomy or intrathecal administration of an antisense to G-protein-coupled estrogen receptor 30 (GPER) mRNA, HMWH produces antihyperalgesia in females.

View Article and Find Full Text PDF

Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) is commonly used for identification of compounds in complex samples due to the high chromatographic and mass spectral resolution provided. In subsequent data processing workflows, it is imperative to preserve this resolution to fully exploit the data. "Region of interest" (ROI) algorithms were introduced as a better alternative to equidistant binning for compressing HRMS data because they better preserve the mass spectral resolution.

View Article and Find Full Text PDF

Background: The initiation of cognitive impairment is triggered by a myriad of pathological events occurring decades before clinical symptoms manifest. Perturbed glucose and fatty acid metabolism notably contribute to the development of cognitive impairment, progressing further into clinical dementia. These metabolic alterations are evident in plasma through changes in specific metabolites.

View Article and Find Full Text PDF

Background: We have been investigating in vivo astrocytic Ca homeostasis in the primary somatosensory cortex (S1) of awake, head-restrained ambulating mice using two-photon technology. Prior results from our lab were obtained in neurons across aging, and in male and female C57Bl6/J mice (Case et al., 2023).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!