Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionnevgsdkt09qbd6pac1e70ihbort20pt1): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metamaterial absorption technology plays an increasingly important role in military and civilian sectors, serving crucial functions in communication, radar technology, and electromagnetic cloaking. However, traditional metamaterial absorbers are predominantly composed of periodic structures, thus limiting their absorption bandwidth, polarization, and angular flexibility. This study employs disordered structures, utilizing their randomness and diversity, to optimize and enhance the performance of periodic structure metamaterial absorbers. Building upon a well-designed periodic perfect absorption structure, a uniform distribution function is introduced to analyze the effects of positional and size disorder on the absorptive properties of the metamaterial. The mechanisms of the disorder are further investigated through simulation analysis. Subsequently, an innovative approach based on disorder engineering for broadband enhancement of metamaterial absorbers is proposed. Numerical simulation results and experimental validations demonstrate that absorbers constructed using this method significantly broaden the absorption bandwidth while maintaining excellent angular and polarization stability. This research not only offers a new method for the design and performance optimization of metamaterial absorbers but also provides a theoretical foundation for the development of metamaterial self-assembly techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.529831 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.