A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting stroke severity of patients using interpretable machine learning algorithms. | LitMetric

Background: Stroke is a significant global health concern, ranking as the second leading cause of death and placing a substantial financial burden on healthcare systems, particularly in low- and middle-income countries. Timely evaluation of stroke severity is crucial for predicting clinical outcomes, with standard assessment tools being the Rapid Arterial Occlusion Evaluation (RACE) and the National Institutes of Health Stroke Scale (NIHSS). This study aims to utilize Machine Learning (ML) algorithms to predict stroke severity using these two distinct scales.

Methods: We conducted this study using two datasets collected from hospitals in Urmia, Iran, corresponding to stroke severity assessments based on RACE and NIHSS. Seven ML algorithms were applied, including K-Nearest Neighbor (KNN), Decision Tree (DT), Random Forest (RF), Adaptive Boosting (AdaBoost), Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), and Artificial Neural Network (ANN). Hyperparameter tuning was performed using grid search to optimize model performance, and SHapley Additive Explanations (SHAP) were used to interpret the contribution of individual features.

Results: Among the models, the RF achieved the highest performance, with accuracies of 92.68% for the RACE dataset and 91.19% for the NIHSS dataset. The Area Under the Curve (AUC) was 92.02% and 97.86% for the RACE and NIHSS datasets, respectively. The SHAP analysis identified triglyceride levels, length of hospital stay, and age as critical predictors of stroke severity.

Conclusions: This study is the first to apply ML models to the RACE and NIHSS scales for predicting stroke severity. The use of SHAP enhances the interpretability of the models, increasing clinicians' trust in these ML algorithms. The best-performing ML model can be a valuable tool for assisting medical professionals in predicting stroke severity in clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562860PMC
http://dx.doi.org/10.1186/s40001-024-02147-1DOI Listing

Publication Analysis

Top Keywords

stroke severity
24
predicting stroke
12
race nihss
12
machine learning
8
learning algorithms
8
stroke
8
severity
6
race
5
nihss
5
predicting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!