A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adsorption Structure-Activity Correlation in the Photocatalytic Chemistry of Methanol and Water on TiO(110). | LitMetric

Adsorption Structure-Activity Correlation in the Photocatalytic Chemistry of Methanol and Water on TiO(110).

Acc Chem Res

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China.

Published: December 2024

AI Article Synopsis

  • Photocatalysis involves light absorption and charge transfer processes that have potential applications in converting solar energy to fuel, such as in water oxidation, but the detailed mechanisms remain unclear due to the complexity of catalysts in aqueous environments.
  • The lack of direct experimental evidence leads to misunderstandings about active sites and charge transfer dynamics, as seen in debates regarding the role of Ti sites on TiO surfaces in oxidative reactions.
  • This study employs advanced surface science techniques and theoretical calculations to provide insights into the photocatalytic reactions of methanol and water on TiO, aiming to clarify the molecular-level mechanisms involved.

Article Abstract

ConspectusPhotocatalysis, a process involving light absorption (band gap excitation), charge separation, interfacial charge transfer, and surface redox reactions, has attracted intensive attention because of the potential applications in solar to fuel conversion. Despite the great efforts devoted to the design of materials and optimization of charge separation and overall efficiency, the molecular mechanism of photocatalytic reactions, for example, water oxidation, is still unclear, mainly because of the complexity of powder catalysts and the aqueous environment which prevent the direct experimental detection of adsorption sites, surface species, and charge/energy transfer dynamics. Without direct evidence, the charge transfer and elementary reaction steps remain elusive, and misleading conclusions are sometimes drawn. For instance, the positively charged 5-fold coordinated Ti sites (Tis) on TiO surfaces are argued to propel holes and therefore cannot be active sites for oxidative reactions, regardless of the demonstration by scanning tunneling microscopy (STM). Direct site-specific measurements are thus highly demanded. Surface science studies, which rely on well-defined single crystals and ultrahigh vacuum based techniques, can identify the active sites and active species at the catalyst surfaces and measure the interfacial electronic structure and energy of desorbing species for charge transfer analysis, providing direct evidence for investigating the photocatalytic reaction mechanism at the molecular level.In this Account, the elementary photocatalytic chemistry of methanol and water on TiO, which are investigated by surface science techniques such as atom-resolved STM, ensemble-averaged mass spectrometer based temperature-programmed desorption/time-of-flight spectroscopy, and photoelectron spectroscopy in combination with theoretical calculations, will be described. Both methanol and water can be photocatalytically oxidized at Tis, producing adsorbed formaldehyde and gaseous OH radicals, respectively, under ultraviolet (UV) light irradiation. The photocatalytic activity shows salient adsorption structure including adsorption site (terminal/bridging), adsorption state (molecular/dissociative) and adsorption configuration (monomer/cluster) dependence, which comes from the ability to generate terminal anions which are capable of capturing photogenerated holes and exhibit superior photocatalytic activity over their parent molecules. These studies reveal the origin of the correlation between photocatalytic activity and adsorption structure of CHOH and HO on TiO surfaces and suggest that the simple criteria widely used to analyze the feasibility of charge transfer, i.e., the relative position of the band edges and the molecular orbitals of adsorbates, should be replaced by the change of Gibbs free energy of the charge trapping reaction from the thermodynamic point of view. These results contribute to the fundamental understanding of photocatalysis. Based on our research, future state-resolved and time-resolved studies can provide deeper insight into the charge and energy transfer and transient intermediate species, which will benefit the depiction of the overall photocatalytic reactions, for example, the photocatalyzed oxygen evolution reaction from water.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.4c00578DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669084PMC

Publication Analysis

Top Keywords

charge transfer
16
methanol water
12
photocatalytic activity
12
photocatalytic
8
correlation photocatalytic
8
photocatalytic chemistry
8
chemistry methanol
8
charge
8
charge separation
8
photocatalytic reactions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!