Robust neural networks using stochastic resonance neurons.

Commun Eng

Aston Institute of Photonic Technologies, Aston University, Birmingham, UK.

Published: November 2024

Various successful applications of deep artificial neural networks are effectively facilitated by the possibility to increase the number of layers and neurons in the network at the expense of the growing computational complexity. Increasing computational complexity to improve performance makes hardware implementation more difficult and directly affects both power consumption and the accumulation of signal processing latency, which are critical issues in many applications. Power consumption can be potentially reduced using analog neural networks, the performance of which, however, is limited by noise aggregation. Following the idea of physics-inspired machine learning, we propose here a type of neural network using stochastic resonances as a dynamic nonlinear node and demonstrate the possibility of considerably reducing the number of neurons required for a given prediction accuracy. We also observe that the performance of such neural networks is more robust against the impact of noise in the training data compared to conventional networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561232PMC
http://dx.doi.org/10.1038/s44172-024-00314-0DOI Listing

Publication Analysis

Top Keywords

neural networks
16
computational complexity
8
power consumption
8
networks
5
robust neural
4
networks stochastic
4
stochastic resonance
4
resonance neurons
4
neurons successful
4
successful applications
4

Similar Publications

Robust text-dependent speaker verification system using gender aware Siamese-Triplet Deep Neural Network.

Network

December 2024

Department of Electronics and Communication Engineering, Dronacharya Group of Institutions, Greater Noida, UP, India.

Speaker verification in text-dependent scenarios is critical for high-security applications but faces challenges such as voice quality variations, linguistic diversity, and gender-related pitch differences, which affect authentication accuracy. This paper introduces a Gender-Aware Siamese-Triplet Network-Deep Neural Network (ST-DNN) architecture to address these challenges. The Gender-Aware Network utilizes Convolutional 2D layers with ReLU activation for initial feature extraction, followed by multi-fusion dense skip connections and batch normalization to integrate features across different depths, enhancing discrimination between male and female speakers.

View Article and Find Full Text PDF

This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.

View Article and Find Full Text PDF

In this work, artificial neural network coupled with multi-objective genetic algorithm (ANN-NSGA-II) has been used to develop a model and optimize the conditions for the extracting of the Mentha longifolia (L.) L. plant.

View Article and Find Full Text PDF

This study investigates the use of multi-layered porous media (MLPM) to enhance thermal energy transfer within a counterflow double-pipe heat exchanger (DPHE). We conducted computational fluid dynamics (CFD) simulations on DPHEs featuring five distinct MLPM configurations, analyzed under both fully filled and partially filled conditions, alongside a conventional DPHE. The impact of various parameters such as porous layer arrangements, thickness, and flow Reynolds numbers on pressure drop, logarithmic mean temperature difference (LMTD), and performance evaluation criterion (PEC) was assessed.

View Article and Find Full Text PDF

Failure to predict stroke promptly may lead to delayed treatment, causing severe consequences like permanent neurological damage or death. Early detection using deep learning (DL) and machine learning (ML) models can enhance patient outcomes and mitigate the long-term effects of strokes. The aim of this study is to compare these models, exploring their efficacy in predicting stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!