A combinatorial neural code for long-term motor memory.

Nature

Department of Neurobiology, Duke University, Durham, NC, USA.

Published: November 2024

Motor skill repertoire can be stably retained over long periods, but the neural mechanism that underlies stable memory storage remains poorly understood. Moreover, it is unknown how existing motor memories are maintained as new motor skills are continuously acquired. Here we tracked neural representation of learned actions throughout a significant portion of the lifespan of a mouse and show that learned actions are stably retained in combination with context, which protects existing memories from erasure during new motor learning. We established a continual learning paradigm in which mice learned to perform directional licking in different task contexts while we tracked motor cortex activity for up to six months using two-photon imaging. Within the same task context, activity driving directional licking was stable over time with little representational drift. When learning new task contexts, new preparatory activity emerged to drive the same licking actions. Learning created parallel new motor memories instead of modifying existing representations. Re-learning to make the same actions in the previous task context re-activated the previous preparatory activity, even months later. Continual learning of new task contexts kept creating new preparatory activity patterns. Context-specific memories, as we observed in the motor system, may provide a solution for stable memory storage throughout continual learning.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-024-08193-3DOI Listing

Publication Analysis

Top Keywords

continual learning
12
task contexts
12
preparatory activity
12
motor
8
stably retained
8
stable memory
8
memory storage
8
motor memories
8
learned actions
8
directional licking
8

Similar Publications

Central to the development of universal learning systems is the ability to solve multiple tasks without retraining from scratch when new data arrives. This is crucial because each task requires significant training time. Addressing the problem of continual learning necessitates various methods due to the complexity of the problem space.

View Article and Find Full Text PDF

Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.

View Article and Find Full Text PDF

Optimizing demand response and load balancing in smart EV charging networks using AI integrated blockchain framework.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.

The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.

View Article and Find Full Text PDF

Regressions on quantum neural networks at maximal expressivity.

Sci Rep

December 2024

Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Spain.

Considering a universal deep neural network organized as a series of nested qubit rotations, accomplished by adjustable data re-uploads we analyze its expressivity. This ability to approximate continuous functions in regression tasks is quantified making use of a partial Fourier decomposition of the generated output and systematically benchmarked with the aid of a teacher-student scheme. While the maximal expressive power increases with the depth of the network and the number of qubits, it is fundamentally bounded by the data encoding mechanism.

View Article and Find Full Text PDF

Addressing the issues of a single-feature input channel structure, scarcity of training fault data, and insufficient feature learning capabilities in noisy environments for intelligent diagnostic models of mechanical equipment, we propose a method based on a one-dimensional and two-dimensional dual-channel feature information fusion convolutional neural network (1D_2DIFCNN). By constructing a one-dimensional and two-dimensiona dual-channel feature information fusion convolutional network and introducing a Convolutional Block Attention Mechanism, we utilize Random Overlapping Sampling Technique to process raw vibration signals. The model takes as inputs both one-dimensional data and two-dimensional Continuous Wavelet Transform images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!