Download full-text PDF

Source
http://dx.doi.org/10.1038/d41586-024-03546-4DOI Listing

Publication Analysis

Top Keywords

robotic exoskeleton
4
exoskeleton adapts
4
adapts changes
4
changes leg
4
leg movements
4
movements real
4
real time
4
robotic
1
adapts
1
changes
1

Similar Publications

An attention-based motor imagery brain-computer interface system for lower limb exoskeletons.

Rev Sci Instrum

December 2024

School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China.

Lower-limb exoskeletons have become increasingly popular in rehabilitation to help patients with disabilities regain mobility and independence. Brain-computer interface (BCI) offers a natural control method for these exoskeletons, allowing users to operate them through their electroencephalogram (EEG) signals. However, the limited EEG decoding performance of the BCI system restricts its application for lower limb exoskeletons.

View Article and Find Full Text PDF

Objective: To perform a systematic review of the utility of exoskeleton robotic therapy on lower extremity recovery in Spinal Cord Injury (SCI) patients.

Methods: We used the Embase, Cochrane, and PubMed databases and searched from to December 2023 for studies on exoskeleton robotic assist devices used in working with SCI patients. Only articles published in English were evaluated, and the retrieved articles were screened via our inclusion/exclusion criteria.

View Article and Find Full Text PDF

Background: Functional electrical stimulation (FES) and robotic exoskeletons represent emerging technologies with significant potential for restoring critical physical functions such as standing and walking-functions that are most susceptible after spinal cord injury (SCI). However, the further development and successful integration of these technologies into clinical practice and daily life require a deep understanding of consumer perspectives.

Objective: This review synthesizes consumer perspectives from a diverse range of technology stakeholders, including medical service providers, researchers, and persons affected by SCI-those living with SCI and their caregivers.

View Article and Find Full Text PDF

Background: This research aims to improve the control of assistive devices for individuals with hemiparesis after stroke by providing intuitive and proportional motor control. Stroke is the leading cause of disability in the United States, with 80% of stroke-related disability coming in the form of hemiparesis, presented as weakness or paresis on half of the body. Current assistive exoskeletonscontrolled via electromyography do not allow for fine force regulation.

View Article and Find Full Text PDF

The efficiency and use of a reciprocating system aid for standing and walking in children affected by severe cerebral palsy.

Front Pediatr

December 2024

Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy.

Cerebral Palsy (CP) is a leading cause of childhood motor disability, making independent walking a crucial therapeutic goal. Robotic assistive devices offer potential to enhance mobility, promoting community engagement and quality of life. This is an observational report of 22 cases of children with CP in which we evaluated the Moonwalker exoskeleton (a dynamic moving aid system) usability, functional changes, and caregivers' perspectives based on the International Classification of Functioning (ICF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!