A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Variable resolution machine learning optimization of antennas using global sensitivity analysis. | LitMetric

Variable resolution machine learning optimization of antennas using global sensitivity analysis.

Sci Rep

Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233, Gdansk, Poland.

Published: November 2024

The significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic (EM) simulation models. Surrogate-assisted methods offer acceleration, yet constructing reliable metamodels is hindered in higher-dimensional spaces and systems with highly nonlinear characteristics. This work suggests an innovative technique for global antenna optimization embedded within a machine-learning framework. It involves iteratively refined kriging surrogates and particle swarm optimization for generating infill points. The search process operates within a reduced-dimensionality region established through fast global sensitivity analysis. Domain confinement enables the creation of accurate behavioral models using limited training data, resulting in low CPU costs for optimization. Additional savings are realized by employing variable-resolution EM simulations, where low-fidelity models are utilized during the global search stage (including sensitivity analysis), and high-fidelity ones are reserved for final (gradient-based) tuning of antenna parameters. Comprehensive verification demonstrates the consistent performance of the proposed procedure, its superiority over benchmark techniques, and the relevance of the mechanisms embedded into the algorithm for enhancing search process reliability, design quality, and computational efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560941PMC
http://dx.doi.org/10.1038/s41598-024-77367-wDOI Listing

Publication Analysis

Top Keywords

sensitivity analysis
12
global sensitivity
8
search process
8
optimization
5
variable resolution
4
resolution machine
4
machine learning
4
learning optimization
4
optimization antennas
4
global
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!