Coastal marine and estuarine systems are subject to enormous endogenous and exogenous pressures, particularly climate change, while at the same time being highly productive sources and nurseries for fish populations. Interactions between host and microbiome are increasingly recognized for their importance for fish health, with growing evidence indicating that increasing environmental pressures impact host resilience and favor the raise of opportunistic bacterial taxa. The microbial composition of the gill mucus reflects environmental conditions and represents an entry route for pathogens into the fish body. High-throughput sequencing of prokaryotic populations from 250 samples of two fish species with highly different habitat preferences, as well as seasonal and spatial distributions in the Elbe estuary system, allowed us to describe the variation of the microbiota along a salinity gradient and under fluctuating environmental conditions. The analysis of estuarine fish core microbiota in relation to variable bacterial components indicated dysbiotic states under sustained hypoxia and high nutrient loads largely driven by increased prevalence of facultatively aerobic (Acinetobacter) and anaerobic heterotrophs (Shewanella, Aeromonas). By correlating bacterial abundances with environmental and physiological parameters in a co-occurrence network approach, we describe plasticity in microbiota composition, identify potential biomarkers for fish health monitoring and reconstruct movement patterns of the fish. Our results can help to shape future minimal-invasive and cost-effective monitoring programs, and identify factors that need to be controlled in the estuary to promote fish and stock health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.177505DOI Listing

Publication Analysis

Top Keywords

fish
9
estuarine fish
8
fish health
8
environmental conditions
8
spatio-temporal plasticity
4
plasticity gill
4
microbiota
4
gill microbiota
4
microbiota estuarine
4
fish coastal
4

Similar Publications

The European pond turtle (Emys orbicularis) is a wide-ranging, long-living freshwater species with low reproductive success, mainly due to high predation pressure. We studied how habitat variables and predator communities in near-natural marshes affect the survival of turtle eggs and hatchlings. We followed the survival of artificial turtle nests placed in marshes along Lake Balaton (Hungary) in May and June as well as hatchlings (dummies) exposed in September.

View Article and Find Full Text PDF

Analyzing bacterial networks and interactions in skin and gills of Sparus aurata with microalgae-based additive feeding.

Sci Rep

December 2024

Department of Microbiology, Faculty of Sciences, CEI·MAR-International Campus of Excellence in Marine Science, University of Malaga, Málaga, Spain.

The inclusion of microalgae in functional fish diets has a notable impact on the welfare, metabolism and physiology of the organism. The microbial communities associated with the fish are directly influenced by the host's diet, and further understanding the impact on mucosal microbiota is needed. This study aimed to analyze the microbiota associated with the skin and gills of Sparus aurata fed a diet containing 10% microalgae.

View Article and Find Full Text PDF

Nesfatin-1 is a crucial regulator of energy homeostasis in mammals and fishes, however, its metabolic role remains completely unexplored in amphibians, reptiles, and birds. Therefore, present study elucidates role of nesfatin-1 in glucose homeostasis in wall lizard wherein fasting stimulated hepatic nucb2/nesfatin-1, glycogen phosphorylase (glyp), phosphoenolpyruvate carboxykinase (pepck), and fructose 1,6-bisphosphatase (fbp), while feeding upregulated pancreatic nucb2/nesfatin-1 and insulin, suggesting towards tissue-specific dual role of nesfatin-1 in glucoregulation. The glycogenolytic/gluconeogenic role of nesfatin-1 was further confirmed by an increase in media glucose levels along with heightened hepatic pepck and fbp expression and concomitant decline in liver glycogen content in nesfatin-1-treated liver of wall lizard.

View Article and Find Full Text PDF

The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).

View Article and Find Full Text PDF

Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!