Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acute pancreatitis (AP) is influenced by interactions between gut microbiota and metabolic products, though the mechanisms remain unclear. This study investigates variations in gut microbiota and metabolites between severe (SAP) and mild acute pancreatitis (MAP) patients to assess their impact on disease progression. Using a cross-sectional cohort design, gut microbiota and metabolite profiles were compared in SAP and MAP patients over two weeks post-diagnosis. 16S rRNA gene sequencing and metabolomic analyses, including KEGG pathway assessments and Spearman correlation, were employed, along with Mendelian Randomization (MR) to assess the influence of specific microbiota on AP. Results showed that SAP patients had significantly reduced gut microbiota diversity, which further declined in the second week. This was marked by increases in pathogenic bacteria like Stenotrophomonas and Enterobacter and decreases in beneficial bacteria such as Blautia. Key changes included a rise in Proteobacteria and a decline in Ruminococcaceae, Enterococcus, and Faecalicatena. Metabolic shifts included lipid metabolite upregulation and antioxidant downregulation. Correlation analysis linked Stenotrophomonas to short-chain fatty acid and amino acid metabolism, highlighting its role in disease progression. MR analysis confirmed negative causal relationships between Enterococcus B, Faecalicatena torques, and AP, suggesting protective effects. Variations in Blautia species indicated differing influences on AP. This study underscores the critical role of gut microbiota and metabolites in AP progression and suggests the need for further research to confirm these findings and explore targeted therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2024.107030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!