Background: The intrinsic healing ability of articular cartilage is poor after injury or illness, and untreated injury could lead to cartilage degeneration and ultimately osteoarthritis. iMSCs are derived from embryonic induced pluripotent stem cells and have strong therapeutic capabilities in the repair of cartilage defects, while the mechanism of action is unclear. The aim of this study is to clarify the repair mode of iMSCs on cartilage defects in rat knee joints, elucidate the chemotactic effect of iMSCs on autologous BMSCs in rats, and provide a basis for the treatment of cartilage defects and endogenous regeneration with iMSCs.
Methods: Based on the establishment of the rat cartilage defect model, the reparative effect of iMSCs on the rat cartilage defect was evaluated. The cartilage repair was evaluated by quantitative score, H&E staining, Masson staining and Safranin-O staining, and the metabolic changes of iMSCs in the joint cavity were detected in vivo. The expression of SOX9, CD29, CD90, ColⅠ, ColⅡ, PCNA, SDF-1, and CXCR4 was detected by immunohistochemistry (IHC), IF, flow cytometry, respectively. After co-culturing iMSCs with BMSCs in vitro, the expression of CXCR4/SDF-1 on the cell membrane surface of BMSCs was detected by western blotting.; The level of p-Akt and p-Erk1/2 in total protein of BMSCs were detected by western blotting.
Significance: Our research results provide experimental evidence for the treatment of cartilage defects and endogenous regeneration with iMSCs; This also provides new ideas for the clinical treatment of cartilage defects using iMSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2024.117649 | DOI Listing |
Purpose: Tibial rotational deformity is a known risk factor for patellofemoral joint (PFJ) disorders. However, it is commonly associated with other abnormalities which affect the PFJ. The purpose of this study was to describe the prevalence of associated factors known to affect PFJ in patients undergoing rotational tibial osteotomy and their implication for the correction level.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China.
A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option.
View Article and Find Full Text PDFAnn Thorac Surg Short Rep
September 2024
Division of Esophageal and Thoracic Surgery, Thomas Jefferson University Hospital, Philadelphia, Philadelphia.
Background: Pectus excavatum (PE) is the most common congenital chest wall defect and is characterized by the inward displacement of the sternum and costal cartilages. To date, there are limited data on adult patients undergoing the Nuss procedure for PE. This study aimed to assess the complication rate between the pediatric and adult populations and assess the trends in demographics.
View Article and Find Full Text PDFSci Rep
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Car accidents, infections caused by bacteria or viruses, metastatic lesions, tumors, and malignancies are the most frequent causes of chest wall damage, leading to the removal of the affected area. After excision, artificial bone or synthetic materials are used in chest wall reconstruction to restore the skeletal structure of the chest. Chest implants have traditionally been made from metallic materials like titanium alloys due to their biocompatibility and durability.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedic Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.
Background: Osteochondral allograft transplantation (OCA) is well established as a viable chondral restoration procedure for the treatment of symptomatic, focal chondral defects of the knee. The efficacy of secondary OCA in the setting of failed index cartilage repair or restoration is poorly understood.
Purpose: To evaluate radiographic and clinical outcomes, failures, and reoperations after OCA after failed index cartilage repair or restoration of the knee.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!