Design and synthesis of glycofullerene derivatives as novel photosensitizer for potential application in PDT to treat cancer.

Eur J Med Chem

Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France; Fuyang Institute & School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311422, Zhejiang, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China. Electronic address:

Published: January 2025

Cancer is one of the most aggressive diseases known to humanity, characterized by low survival rates and poor prognoses. Currently, platinum-based anticancer drugs and traditional photosensitizers used in photodynamic therapy (PDT) are the most widely employed treatment modalities. However, the platinum-based medications, particularly cisplatin, the most commonly used agent, have several drawbacks. These drawbacks may include systemic toxicity, which can manifest as nephrotoxicity, neurotoxicity, ototoxicity, or emesis during treatment. Such side effects can severely impair patients and significantly diminish the overall effectiveness of therapeutic interventions. In contrast, photodynamic therapy does not present these disadvantages. PDT offers numerous benefits, including reduced long-term morbidity, minimal systemic toxicity, low invasiveness, negligible drug resistance, and temporal and geographic selectivity, all of which enhance patients' quality of life. Consequently, the search for novel, effective, and practical photosensitizers is essential. Fullerenes possess unique physicochemical properties that make them highly suitable as photosensitizers. In this study, we developed a comprehensive and straightforward synthesis for two water-soluble sugar fullerene derivatives, designated as 12 and 13. Multiple analytical techniques, including H NMR, C NMR, high-resolution mass spectrometry (HRMS), Fourier-transform infrared spectroscopy (FT-IR), and ultraviolet-visible (UV-Vis) spectroscopy, collectively confirmed the chemical structures of these derivatives and validated their successful synthesis. Upon exposure to white light irradiation at an intensity of 2.5J/cm, compound 13 demonstrated significant biological activity against three distinct tumor cell lines: HepG2, MKN45, and RPMI 4788, with IC values of 5.65 μM, 2.43 μM, and 1.82 μM, respectively. This study establishes a foundation for the development of innovative clinical photosensitizers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2024.117009DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
systemic toxicity
8
design synthesis
4
synthesis glycofullerene
4
glycofullerene derivatives
4
derivatives novel
4
novel photosensitizer
4
photosensitizer potential
4
potential application
4
application pdt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!