A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel ternary hydrophobic deep eutectic solvent over a wide pH range for lithium recovery. | LitMetric

A novel ternary hydrophobic deep eutectic solvent over a wide pH range for lithium recovery.

J Hazard Mater

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China. Electronic address:

Published: December 2024

AI Article Synopsis

  • The global demand for lithium, essential for green technology and energy storage, is on the rise, prompting the development of a new method for lithium recovery using a ternary hydrophobic deep eutectic solvent (HDES).
  • This HDES, made from specific chemical compounds, efficiently extracts lithium from water across a wide pH range (3-13) without the need for a highly alkaline environment, making it a more eco-friendly option.
  • The method achieves rapid extraction with a high efficiency of nearly 99% and excellent separation from sodium, showcasing its potential for industrial applications in lithium recovery.

Article Abstract

Owing to the crucial role of lithium (Li) in green technology and energy storage, the global demand for Li is constantly increasing. This article provides a new strategy for recovering Li using ternary hydrophobic deep eutectic solvent (HDES). The novel HDES was composed of 2-thiophenyltrifluoroacetone (HTTA), trioctylphosphine oxide (TOPO), and N,N-diethyldecanamide (DDA), and exhibited high efficiency and selectivity for extracting Li from aqueous solutions. This study systematically evaluated the effect of the initial aqueous pH on the Li extraction efficiency, revealing the stable performance of HDES in the pH range 3-13. Compared to the highly alkaline environment required for Li extraction, the pH characteristics of the HDES provide a wider range of applications and a more environmentally friendly alternative. The HDES exhibited rapid extraction kinetics, achieving equilibrium within 10 min and maintaining phase stability without emulsification. The main mechanism of selective Li extraction is the electrostatic interaction between Li(I) and TTA. The interactions between Li(I) and both TOPO and DDA were confirmed by Fourier transform infrared (FT-IR) spectroscopy, thereby improving the selectivity and extraction efficiency. The countercurrent extraction process demonstrated an impressive Li extraction rate of 98.704 % and a Li(I)/Na(I) separation factor of 10643.14 with industrial LiCO mother liquor, highlighting the application potential of the ternary HDES. The excellent performance of the HDES over a wide pH range provides more opportunities for its application, and its high efficiency, selectivity, and environmental characteristics may promote Li recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136398DOI Listing

Publication Analysis

Top Keywords

ternary hydrophobic
8
hydrophobic deep
8
deep eutectic
8
eutectic solvent
8
wide range
8
high efficiency
8
efficiency selectivity
8
extraction efficiency
8
performance hdes
8
hdes
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!