Since the gut microbiota plays a crucial role in host metabolism and homeostasis, its alterations induced by xenobiotics such as pesticides, could pose a risk to host health. The pyrethroid insecticides were frequently detected in surface water (up to 13 mg/L worldwide), sediments, and agricultural products; additionally, some previous studies indicated that pyrethroid insecticides could cause disruption of gut homeostasis. Hence herein, the normally used pyrethroid lambda-cyhalothrin (LCT) was selected and studied for its effects on the intestinal microbial community and its related bile acid metabolism using mice as the model species. Results showed that the total amount of bile acids in plasma and fecal samples from LCT treated mice markedly increased compared to controls, which could be mainly ascribed to the significantly raised proportions of taurine conjugated bile acids in plasma, and the increase in fecal secondary bile acids. In gut microbial profiles, a significantly increased richness of Prevotellacea and a depletion of Lachnospiraceae were found at the family level upon the treatment with lambda-cyhalothrin. In conclusion, results obtained on bacterial and bile acid profiles corroborate that the treatment of mice with LCT could affect gut microbial community with accompanying changes in bile acid homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.136417 | DOI Listing |
Through biochemical transformation of host-derived bile acids (BAs), gut bacteria mediate host-microbe crosstalk and sit at the interface of nutrition, the microbiome, and disease. BAs play a crucial role in human health by facilitating the absorption of dietary lipophilic nutrients, interacting with hormone receptors to regulate host physiology, and shaping gut microbiota composition through antimicrobial activity. Bile acid deconjugation by bacterial bile salt hydrolase (BSH) has long been recognized as the first necessary BA modification required before further transformations can occur.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, People's Republic of China.
Background: Sepsis is a severe complication in leukemia patients, contributing to high mortality rates. Identifying early predictors of sepsis is crucial for timely intervention. This study aimed to develop and validate a predictive model for sepsis risk in leukemia patients using machine learning techniques.
View Article and Find Full Text PDFRev Cardiovasc Med
January 2025
Thoracic Clinical College, Tianjin Medical University, 300070 Tianjin, China.
Background: Studies using machine learning to identify the target characteristics and develop predictive models for coronary artery disease severity in patients with premature myocardial infarction (PMI) are limited.
Methods: In this observational study, 1111 PMI patients (≤55 years) at Tianjin Chest Hospital from 2017 to 2022 were selected and divided according to their SYNTAX scores into a low-risk group (≤22) and medium-high-risk group (>22). These groups were further randomly assigned to a training or test set in a ratio of 7:3.
J Community Hosp Intern Med Perspect
January 2025
Division of Infectious Disease, Department of Internal Medicine, Naples Comprehensive Health, Naples, FL, USA.
is a gram-positive bacterium commonly found in dairy products and used as a probiotic due to its resistance to acid and bile. While generally considered safe, rare cases of bacteremia and endocarditis have been reported, primarily in individuals with significant risk factors. This report discusses an elderly male with a history of cardiovascular diseases, diabetes, and asthma, who developed bacteremia and endocarditis after consuming large quantities of Greek yogurt.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Nishtar Medical University, Multan, PAK.
Progressive familial intrahepatic cholestasis type 2 (PFIC2) is a rare genetic disorder characterized by severe intrahepatic cholestasis, which often manifests in infancy with progressive liver dysfunction. We present the case of a 3-month-old infant with a one-month history of jaundice, vomiting, and bloody stools, presenting a unique set of diagnostic challenges. Initial clinical and laboratory findings indicated significant liver dysfunction, prompting further imaging and genetic analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!