Staggered gap p-n heterojunction ZnO nanorods/AgO nanoparticles, a paradigm of photocatalysts, were developed via engineering the hydrothermal and coprecipitation method. Under simulated sunlight, the photocatalytic characteristics of ZnO/AgO(Zn/A) heterojunctions with varying mole ratios (from 8:1 to 8:4, named Zn/A-1-Zn/A-4) were systematically evaluated through the degradation of methylene blue (MB). The influence of key experimental variables, including photocatalyst concentration, MB concentration, and solution pH, on the photocatalyst performance was further analyzed. The incorporation of AgO enhanced visible-light absorption, improved electron-hole separation efficiency, and significantly improved the photocatalytic recyclability of the Zn/A heterojunctions. Additionally, metallic Ag generated during photodegradation was found to enhance the photocatalytic activity further. Kinetic studies indicated that the photocatalytic degradation of MB followed pseudo-first-order kinetics, with the Zn/A-3 heterojunction showing the highest photocatalytic activity, achieving a degradation rate constant () of 0.028 min. Scavenger experiments confirmed that •OH radicals, holes (h), and superoxide radicals (•O) were the primary reactive species involved in the degradation process. The photocatalytic mechanism was identified as a Z-scheme charge transfer system, facilitating efficient charge separation. Moreover, the Zn/A-3 heterojunction exhibited remarkable recyclability, retaining >91% of the photocatalytic activity after five cycles. This study demonstrates the potential of Zn/A heterojunctions for practical applications in industrial wastewater treatment using solar energy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c02670DOI Listing

Publication Analysis

Top Keywords

photocatalytic activity
12
charge transfer
8
zn/a heterojunctions
8
zn/a-3 heterojunction
8
photocatalytic
7
engineering charge
4
transfer characteristics
4
characteristics zno
4
zno nrs/ago
4
nrs/ago nps
4

Similar Publications

The world is now facing a water scarcity crisis due to waste, pollution, and uneven distribution of freshwater resources, which are limited. Thus, the creation of innovative, economical, and effective methods for purifying water is crucial. Here, the photo-assisted degradation of methylene blue (MB) dye under visible light and UV was achieved by using RGO photocatalyst loaded with ZnCuFeO in three different loaded 10%, 20%, and 30% called MRGO 10, MRGO 20, and MRGO 30.

View Article and Find Full Text PDF

Fluorine-expedited nitridation of layered perovskite SrTiO for visible-light-driven photocatalytic overall water splitting.

Nat Commun

January 2025

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China.

Photocatalytic overall water splitting is a promising approach for a sustainable hydrogen provision using solar energy. For sufficient solar energy utilization, this reaction ought to be operated based on visible-light-active semiconductors, which is very challenging. In this work, an F-expedited nitridation strategy is applied to modify the wide-bandgap semiconductor SrTiO for visible-light-driven photocatalytic overall water splitting.

View Article and Find Full Text PDF

Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions.

View Article and Find Full Text PDF

Isolated Neutral Organic Radical Unveiled Solvent-Radical Interaction in Highly Reducing Photocatalysis.

Angew Chem Int Ed Engl

January 2025

The University of Arizona, Chemistry and BioChemistry, 1306 E University Blvd, CSML 638, 85719, Tucson, UNITED STATES OF AMERICA.

Diffusion-limited kinetics is a key mechanistic debate when consecutive photoelectron transfer (conPET) is discussed in photoredox catalysis. In-situ generated organic photoactive radicals can access catalytic systems as reducing as alkaline metals that can activate remarkably stable bonds. However, in many cases, the extremely short-lived transient nature of these doublet state open-shell species has led to debatable mechanistic studies, hindering adoption and development.

View Article and Find Full Text PDF

The pressing necessity to mitigate climate change and decrease greenhouse gas emissions has driven the advancement of heterostructure-based photocatalysts for effective CO₂ reduction. This study introduces a novel heterojunction photocatalyst formed by integrating potassium-doped polymeric carbon nitride (KPCN) with metallic Zn₃N₂, synthesized via a microwave-assisted molten salt method. The resulting Schottky contact effectively suppresses the reverse diffusion of electrons, achieving spatial separation of photogenerated charges and prolonging their lifetime, which significantly enhances photocatalytic activity and efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!