The asymmetric distribution of RNA within a cell plays a pivotal biological role, ensuring the distinctive shapes and functionality of subcellular compartments. In neurons, these mechanisms are fundamental to cellular growth, synaptic plasticity, and information processing. To understand these mechanisms, diverse methods have been developed to analyze localized transcripts. Here, we outline our optimized method for measurement of mRNA half-lives in subcellular neuronal compartments-neurites, and cytoplasmic and nuclear fractions of cell bodies. We call this method spatial SLAMseq, as it combines SLAMseq with subcellular compartment separation techniques. Spatial SLAMseq facilitates the concurrent measurement of mRNA dynamics and steady-state RNA levels within neuronal subcellular compartments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-4176-7_18DOI Listing

Publication Analysis

Top Keywords

spatial slamseq
12
subcellular compartments
8
measurement mrna
8
concurrent profiling
4
profiling localized
4
localized transcriptome
4
transcriptome rna
4
rna dynamics
4
dynamics neurons
4
neurons spatial
4

Similar Publications

The asymmetric distribution of RNA within a cell plays a pivotal biological role, ensuring the distinctive shapes and functionality of subcellular compartments. In neurons, these mechanisms are fundamental to cellular growth, synaptic plasticity, and information processing. To understand these mechanisms, diverse methods have been developed to analyze localized transcripts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!