Objective: To optimize high-resolution 7 T MRI of the cochlea and measure normal cochlea and the cochlear nerve morphometry in vivo.

Materials And Methods: Eight volunteers with normal hearing were scanned at 7 T using an optimized protocol. Two neuroradiologists independently scored image quality. The basal turn lumen diameter (BTLD), height, width, length and volume of the cochlear, long (LD) and short (SD) diameter the calculated cross-sectional area (CSA) of the cochlear nerve were measured. Intra and inter-observer reliability was assessed using intraclass correlation (ICC).

Results: 3D T2W DRIVE combined with dielectric pads, allowed acquisition of high-resolution images showing detailed structures, such as the crista ampullaris in the semicircular canals. The overall grading scores from neuroradiologists were excellent. In the left ear, averaging over all subjects gave BTLD of 2.6 ± 0.05 mm, height of 4.9 ± 0.1 mm, width of 4.4 ± 0.2 mm, length of 36.5 ± 0.4 mm, volume of 0.16 ± 0.02 ml, LD of 1.31 ± 0.1 mm, SD of 1.06 ± 0.1 mm, and CSA of 1.1 ± 0.1 mm. The right ear gave BTLD of 2.6 ± 0.04 mm, height of 4.9 ± 0.1 mm, width of 4.4 ± 0.3 mm, length of 35.5 ± 0.4 mm, volume of 0.16 ± 0.02 ml, LD of 1.29 ± 0.1 mm, SD of 1.07 ± 0.1 mm, and CSA of 1.10 ± 0.2 mm. No statistically significant difference was found between the sides of the head (p-value > 0.05). The intra-observer reliability was high (0.77-0.94), while the inter-observer reliability varied from moderate to high (0.55-0.81).

Conclusion: 7 T MRI can provide excellent visualization of the internal structure of the cochlear and of the vestibulocochlear nerve in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10334-024-01213-3DOI Listing

Publication Analysis

Top Keywords

7 t mri
12
vestibulocochlear nerve
8
cochlear nerve
8
inter-observer reliability
8
height 49 ± 01 mm
8
49 ± 01 mm width
8
volume 016 ± 002 ml
8
morphology human
4
human inner
4
inner ear
4

Similar Publications

Key Points: Massive irreparable rotator cuff tear was used as a model to study the impact of chronic pain and motor impairment on the motor systems of the human brain using magnetic resonance imaging. Patients show markers of lower grey/white matter integrity and lower functional connectivity compared with control participants in regions responsible for movement and the perception of visual movement and body shape. An independent cohort of patients showed relative deficits in the perception of visual motion and hand laterality compared with an age-matched control group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!