A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Live Single-Cell Transcriptional Dynamics in Plant Cells. | LitMetric

Live Single-Cell Transcriptional Dynamics in Plant Cells.

Methods Mol Biol

Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des Végétaux à leur Environnement), Saint-Paul, France.

Published: November 2024

Transcriptional reprogramming plays a key role in a variety of biological processes. Recent advances in RNA imaging techniques have allowed to visualize, in vivo, transcription-related mechanisms in different organisms. The MS2 system constitutes a robust method that has been used for over two decades to image multiple steps of a transcript's life cycle from "birth to death" with high spatiotemporal resolution in the animal field. It is based on the high affinity binding of the MS2 bacteriophage coat protein to its RNA hairpin ligands. Despite its broad applicability, a limited number of studies have implemented the system in plants, but without exploiting its full potential. Here, we describe the transposition of the MS2 technique to Arabidopsis. Combined with microfluidics, it allows to visualize the transcriptional repression of a phosphate starvation induced gene (SPX1) upon phosphate refeeding in vivo. The system provided access to the transcriptional response kinetics of individual cells, gene expression heterogeneity, and revealed bursting phenomena in plantae. The described methods provide new insights for multiple applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-4248-1_4DOI Listing

Publication Analysis

Top Keywords

live single-cell
4
transcriptional
4
single-cell transcriptional
4
transcriptional dynamics
4
dynamics plant
4
plant cells
4
cells transcriptional
4
transcriptional reprogramming
4
reprogramming plays
4
plays key
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!