miRNA-148a-3p targets to regulate the lipid metabolism gene SOCS3 to reduce myocardial ischemia/reperfusion injury.

Minerva Cardiol Angiol

Guangxi Key Laboratory of Basic Medical Research Support for Immune-related Diseases, Baise, Guangxi, China -

Published: November 2024

Background: Acute myocardial infarction (AMI) is a major cause of death in cardiovascular patients. SOCS3's protective role in cardiac I/R-I is being explored, and miRNAs, particularly miRNA-148a-3p, are suspected to target SOCS3. To elucidate the role of miRNA-148a-3p targeting lipid metabolism gene SOCS3 in cardiac ischemia-reperfusion injury (I/R-I) in rats.

Methods: Derived mRNA expression data GSE59867 from GEO, identified 558 lipid metabolism genes from KEGG and GSEA, and screened for differentially expressed genes in acute myocardial infarction (AMI). Predicted miRNA-148a-3p targeting SOCS3 using TargetScanHuman, validated binding via luciferase assay and 3'UTR mutation. Established a rat I/R-I model to assess miRNA-148a-3p and SOCS3 expression, and investigated SOCS3 regulation by miRNA-148a-3p overexpression. Analyzed expression of NF-κB p65, IL-1β, and TNF-α-related proteins, and evaluated cardiac hemodynamics post-SOCS3 regulation by miRNA-148a-3p.

Results: In GSE59867, TSPO, SOCS3, LRP1, PLB1, CYP1B1, PPARG, ACSL1, and CYP27A1 were identified as differentially expressed lipid metabolism genes in AMI. The results of immune infiltration showed a close relationship between the differential lipid metabolism genes and the infiltration of immune cells such as macrophages and monocytes. The random forest algorithm identified SOCS3 as the key gene. The luciferase reporter gene demonstrated the participation of miRNA-148a-3p in the regulation of SOCS3 by binding to its 3'UTR. In vivo experiments revealed low expression of miRNA-148a-3p in myocardial I/R, while SOCS3 was highly expressed. Elevated miRNA-148a-3p expression led to a decrease in SOCS3, NF-κB p65, IL-1β, and TNF-α levels during cardiac I/R-I. Overexpression of miRNA-148a-3p enhanced the cardiac performance in rats experiencing cardiac I/R-I.

Conclusions: Overexpression of miRNA-148a-3p regulates NF-κB signaling pathway by targeting lipid metabolism gene SOCS3, reduces inflammatory response, and then reduces cardiac I/R-I in rats.

Download full-text PDF

Source
http://dx.doi.org/10.23736/S2724-5683.24.06578-5DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
24
metabolism gene
12
socs3
12
gene socs3
12
cardiac i/r-i
12
metabolism genes
12
mirna-148a-3p
11
acute myocardial
8
myocardial infarction
8
infarction ami
8

Similar Publications

From Genetic Findings to new Intestinal Molecular Targets in Lipid Metabolism.

Curr Atheroscler Rep

January 2025

Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000, Nantes, France.

Purpose Of Review: While lipid-lowering therapies demonstrate efficacy, many patients still contend with significant residual risk of atherosclerotic cardiovascular diseases (ASCVD). The intestine plays a pivotal role in regulating circulating lipoproteins levels, thereby exerting influence on ASCVD pathogenesis. This review underscores recent genetic findings from the last six years that delineate new biological pathways and actors in the intestine which regulate lipid-related ASCVD risk.

View Article and Find Full Text PDF

Background: To investigate the effectiveness of different bariatric metabolic surgeries in improving metabolic syndrome indicators in patients.

Methods: A retrospective analysis was conducted on obese patients who underwent laparoscopic sleeve gastrectomy (LSG), laparoscopic sleeve gastrectomy + jejunojejunal bypass (LSG + JJB), and laparoscopic Roux-en-Y gastric bypass (LRYGB). Patients were categorized into groups based on their surgical procedure: LSG (N = 199), LSG + JJB (N = 242), and LRYGB (N = 288).

View Article and Find Full Text PDF

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Ferroptosis: A Targetable Vulnerability for Melanoma Treatment.

J Invest Dermatol

January 2025

Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China. Electronic address:

Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!