Development of Multiscale Force Field for Actinide (An) Solutions.

J Chem Theory Comput

Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.

Published: November 2024

A multiscale force field (FF) is developed for an aqueous solution of trivalent actinide cations An (An = U, Np, Pu, Am, Cm, Bk, and Cf) by using a 12-6-4 Lennard-Jones type potential considering ion-induced dipole interaction. Potential parameters are rigorously and automatically optimized by the meta-multilinear interpolation parametrization (meta-MIP) algorithm via matching the experimental properties, including ion-oxygen distance (IOD) and coordination number (CN) in the first solvation shell and hydration free energy (HFE). The water solvent models incorporate an especially developed polar coarse-grained (CG) water scheme named PW32 and three widely used all-atom (AA) level SPC/E, TIP3P, and TIP4P water schemes. Each PW32 is modeled as two bonded beads to represent three neighboring water molecules, the simulation efficiency of which is 1 to 2 orders of magnitude higher than that of AA waters. The newly developed FF shows high accuracy and transferability in reproducing the IOD, CN, and HFE of An. The molecular structure and water exchange dynamics of the first An hydration shell and the ionic (van der Waals) radii are reinvestigated in this work. Moreover, the new FF can readily be transferred to other popular FFs, as it has practicably predicted the permeability of An in a graphene oxide filter within the framework of optimized potentials for liquid simulations (OPLS)-AA FF. It holds promise for applications in exploring actinide aqueous solutions with multiscale computational overhead.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c01048DOI Listing

Publication Analysis

Top Keywords

multiscale force
8
force field
8
solutions multiscale
8
water
5
development multiscale
4
field actinide
4
actinide solutions
4
field developed
4
developed aqueous
4
aqueous solution
4

Similar Publications

In this study, we explore an enhancement to the U-Net architecture by integrating SK-ResNeXt as the encoder for Land Cover Classification (LCC) tasks using Multispectral Imaging (MSI). SK-ResNeXt introduces cardinality and adaptive kernel sizes, allowing U-Net to better capture multi-scale features and adjust more effectively to variations in spatial resolution, thereby enhancing the model's ability to segment complex land cover types. We evaluate this approach using the Five-Billion-Pixels dataset, composed of 150 large-scale RGB-NIR images and over 5 billion labeled pixels across 24 categories.

View Article and Find Full Text PDF

The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration.

View Article and Find Full Text PDF

Mechanical force is an essential feature for many physical and biological processes, and remote measurement of mechanical signals with high sensitivity and spatial resolution is needed for diverse applications, including robotics, biophysics, energy storage and medicine. Nanoscale luminescent force sensors excel at measuring piconewton forces, whereas larger sensors have proven powerful in probing micronewton forces. However, large gaps remain in the force magnitudes that can be probed remotely from subsurface or interfacial sites, and no individual, non-invasive sensor is capable of measuring over the large dynamic range needed to understand many systems.

View Article and Find Full Text PDF

Analysis of an Unsaturated Seepage Mechanism in Coal Seam Water Injection.

ACS Omega

December 2024

School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China.

Article Synopsis
  • The wetting process of coal seam water injection is complex due to its unsaturated flow characteristics and multiscale pore structure, which affect the measurement of liquid permeability.
  • A one-way multiscale dynamic apparent permeability coefficient model has been developed to analyze how factors like pressure, liquid wettability, and pore structure influence this process.
  • The study finds that water injection pressure significantly affects the apparent permeability coefficient, with higher pressures leading to a smaller attenuation coefficient, while surfactants improve permeability by enhancing capillary wetting.
View Article and Find Full Text PDF

Using an interatomic potential that can capture the tetrahedral configuration of water molecules (HO) in ice without the need to explicitly track the motion of the O and H atoms, coarse-grained (CG) atomistic simulations are performed here to characterize the structures, energy, cohesive strengths, and fracture resistance of the grain boundaries (GBs) in polycrystalline ice resulting from water freezing. Taking the symmetric tilt grain boundaries (STGBs) with a tilting axis of ⟨0001⟩ as an example, several main findings from our simulations are (i) the GB energy, , exhibits a strong dependence on the GB misorientation angle, θ. The classical Read-Shockley model only predicts the - θ relation reasonably well when θ < 20° or θ > 45° but fails when 20° < θ < 45°; (ii) two "valleys" appear in the -θ landscape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!