A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of a large caliber explosively driven shock tube. | LitMetric

Characterization of a large caliber explosively driven shock tube.

Rev Sci Instrum

Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999, Sichuan, People's Republic of China.

Published: November 2024

Research on evaluating weapon systems, building structures, and personnel protection has attracted considerable attention due to the high incidence of blast accidents. The explosively driven shock tube is an affordable and replicable method for investigating high pressure blast waves and extreme shock environments. A newly constructed large caliber explosively driven shock tube with an inner diameter of 2.5 m and a length of 18 m has been documented and characterized in this paper. It is capable of providing a peak pressure of at least 5.49 MPa in the test section with 160 kg of TNT charges. The tube can produce an overpressure that is significantly higher than conventional shock tubes, which expands the capability to simulate a high overpressure blast load. A two-dimensional axisymmetric simulation model has been developed, validated, and calibrated for the characterization of the flow field inside the shock tube. The influence of the charge mass on the overpressure, arrival time, and positive impulse was discussed, and the planarity of the shock wave was also quantitatively characterized. To aid in designing further shock experiments and applications, a physics-based prediction model was developed using the dimensional analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0213918DOI Listing

Publication Analysis

Top Keywords

shock tube
16
explosively driven
12
driven shock
12
large caliber
8
caliber explosively
8
shock
8
model developed
8
tube
5
characterization large
4
tube evaluating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!