An enhanced Bi/nZVI activated molecular oxygen process for the degradation of sulfonamide antibiotics in a citrate buffering system.

Dalton Trans

Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China.

Published: December 2024

Citric acid (CA) and sodium citrate (NaCA) have been effectively employed to synergize with bismuth-doped nanoscale zero-valent iron (Bi/nZVI) to degrade sulfonamide antibiotics (SAs) without the need for additional HO. In the integrated Bi/nZVI-CA/NaCA system, excellent oxidation activity of sulfamethazine (SM2), sulfadiazine (SD) and sulfamethoxazole (SMX) in the mixed solution was obtained. The bimetallic enhancement alongside ligand complexation significantly promoted Bi/nZVI to catalyze molecular oxygen and was conducive to the spontaneous generation of HO. Fe(II)[Cit] was formed in the CA/NaCA system, and then underwent a Fenton-like reaction with spontaneously produced HO to achieve the oxidation of SAs. Long service life was confirmed by the results of characterization, electrochemical analysis, utilization rate (UR), electronic efficiency (EE) and cycling degradation experiments. In the Bi/nZVI-CA/NaCA system, two comparable degradation pathways (hydroxylation and SO extrusion) for SM2, SMX and SD were obtained, while another degradation pathway for SMX was reflected in the opening of the N-O bond on the benzene ring. Additionally, post-reactive solution toxicity was assessed to ensure environmental safety. Overall, our findings provide a theoretical research basis for the effective elimination of SAs from contaminated environments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4dt02556cDOI Listing

Publication Analysis

Top Keywords

molecular oxygen
8
sulfonamide antibiotics
8
bi/nzvi-ca/naca system
8
enhanced bi/nzvi
4
bi/nzvi activated
4
activated molecular
4
oxygen process
4
degradation
4
process degradation
4
degradation sulfonamide
4

Similar Publications

The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.

View Article and Find Full Text PDF

X-ray Responsive Antioxidant Drug-Free Hydrogel for Treatment of Radiation Skin Injury.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.

View Article and Find Full Text PDF

Molecular Mechanism of N-Acetylcysteine Regulating Proliferation and Hormone Secretion of Granulosa Cells in Sheep.

Reprod Domest Anim

January 2025

Tianzhu County Animal Husbandry Technology Extension Station, Tianzhu, Gansu, China.

Granulosa cells (GCs) are pivotal in the development of ovarian follicles, serving not only as supportive cells but also as the primary producers of steroid hormones. The proliferation of these cells and the synthesis of steroid hormones are crucial for follicular development and atresia. In our study, GCs were isolated using follicular fluid aspiration and subsequently identified through immunofluorescence.

View Article and Find Full Text PDF

The Role of SIRT1-BDNF Signaling Pathway in Fluoride-Induced Toxicity for Glial BV-2 Cells.

Biol Trace Elem Res

January 2025

Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou Province, China.

Chronic fluorosis is often accompanied by neurological symptoms, leading to attention, memory and learning ability decline and causing tension, anxiety, depression, and other mental symptoms. In the present study, we analyzed the molecular mechanisms of SIRT1-BDNF regulation of PI3K-AKT, MAPK, and FOXO1A in F-treated BV2 cells. The cytotoxic effect of sodium fluoride (NaF) on BV2 cells was assessed using Cell Counting Kit-8 (CCK-8), crystal violet, and 5-ethynyl-2'-deoxyuridine (EdU) staining.

View Article and Find Full Text PDF

Non-metallic iodine single-atom catalysts with optimized electronic structures for efficient Fenton-like reactions.

Nat Commun

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.

In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!