AI Article Synopsis

  • Photodynamic therapy (PDT) is gaining attention for potentially reducing chemotherapy side effects and enhancing patients’ quality of life, but many PDT drugs struggle with poor absorption and effectiveness.
  • This article examines a specific PDT drug, temoporfin (Foscan), combined with β-cyclodextrin units as carriers to improve its delivery to cells.
  • All-atom simulations demonstrate that the drug complex can penetrate lipid membranes and may dissociate within, supporting the idea that this method could enhance drug efficacy in PDT applications.

Article Abstract

Photodynamic therapy (PDT) represents a most attractive therapeutic strategy to reduce side-effects of chemotherapy and improve the global quality of life of patients. Yet, many PDT drugs suffer from poor bioavailability and cellular intake, and thus, drug-delivering strategies are mandatory. In this article, we rationalize the behavior of a temoporfin-based PDT drug, commercialized under the name of Foscan, complexed by two β-cyclodextrin units, acting as drug carriers, in the presence of a lipid bilayer. Our all-atom simulations have unequivocally shown the internalization of the drug-delivering complex and suggest its possible spontaneous dissociation in the lipid bilayer core. The factors favoring penetration and dissociation have also been analyzed, together with membrane perturbation due to the interaction with the drug carrier complex. Our results confirm the suitability of this encapsulation strategy for PDT and rationalize the experimental results concerning its efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.4c06087DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
lipid bilayer
8
efficient delivering
4
delivering photodynamic
4
drug
4
therapy drug
4
drug cellular
4
cellular membranes
4
membranes rationalized
4
rationalized molecular
4

Similar Publications

Introduction: Squamous cell carcinoma (SCC) is the most common malignancy of the head and neck region. Combination therapy potentially enhances the effectiveness beyond that of each treatment alone. This study aimed to assess whether photodynamic therapy (PDT), using methylene blue as a photosensitizer in conjunction with doxorubicin, produces synergistic effects on the apoptosis of the oral squamous cell carcinoma (OSCC) cell line.

View Article and Find Full Text PDF

Antimicrobial resistance is currently one of the biggest challenges in controlling infectious diseases and was listed among the top 10 threats to global health by the World Health Organization (WHO) in 2023. The antibiotics misuse has led to the widespread emergence of antimicrobial resistance, marking the beginning of the alarming increase in antibiotic resistance. In this context, Antimicrobial Photodynamic Therapy (aPDT) has garnered significant attention from the scientific community due to its potential to effectively eliminate multidrug-resistant pathogenic bacteria and its low propensity to induce drug resistance, which bacteria can quickly develop against traditional antibiotic treatments.

View Article and Find Full Text PDF

Chimeric Peptide-Engineered Polyprodrug Enhances Cytotoxic T Cell Response by Inducing Immunogenic Cell Death and Upregulating Major Histocompatibility Complex Class I.

ACS Nano

December 2024

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.

Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.

View Article and Find Full Text PDF

Copper-coordination driven brain-targeting nanoassembly for efficient glioblastoma multiforme immunotherapy by cuproptosis-mediated tumor immune microenvironment reprogramming.

J Nanobiotechnology

December 2024

Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.

Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.

View Article and Find Full Text PDF

Blue light will be a promising alternative for photodynamic therapy in psoriasis, but the photosensitizer in vivo remains unexplored. Mesoporous zinc phosphate microparticle (MZP) was synthesized successfully in this study, as evidenced by XPS, XRD, and nitrogen adsorption experiments. Its psoriatic skin-sensitive property was corroborated by SEM and the higher cumulative release rate of that impregnated with curcumin (Cur) and glycyrrhizic acid (GA), namely Cur-GA-MZP, at pH 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!