The role of behaviour in animal physiology is much debated, with researchers divided between the traditional view that separates physiology and behaviour, and a progressive perspective that sees behaviour as a physiological effector. We advocate for the latter, and in this Commentary, we argue that behaviour is inherently a physiological process. To do so, we outline the physiological basis for behaviour and draw parallels with recognised physiological processes. We also emphasise the importance of precise language that is shared across biological disciplines, as clear communication is foundational in integrating behaviour into physiology. Our goal with this Commentary is to set the stage for a debate and persuade readers of the merits of including behaviour within the domain of animal physiology. We argue that recognising behaviour as a physiological process is crucial for advancing a unified understanding of physiology, especially in the context of anthropogenic impacts.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.247685DOI Listing

Publication Analysis

Top Keywords

behaviour physiological
12
physiological process
12
behaviour
9
animal physiology
8
physiology
6
physiological
6
bridging divide
4
divide organismal
4
organismal physiology
4
physiology case
4

Similar Publications

Potato is cultivated all the year round in Pakistan. However, the major crop is the autumn crop which is planted in mid-October and contributes 80-85% of the total production. The abrupt climate change has affected the weather patterns all over the world, resulting in the reduction of the mean air temperature in autumn by almost 1.

View Article and Find Full Text PDF

Selectively stopping individual parts of planned or ongoing movements is an everyday motor skill. For example, while walking in public you may stop yourself from waving at a stranger who you mistook for a friend while continuing to walk. Despite its ubiquity, our ability to selectively stop actions is limited.

View Article and Find Full Text PDF

Polygenic risk for depression and resting-state functional connectivity of subgenual anterior cingulate cortex in young adults.

J Psychiatry Neurosci

January 2025

From the Department of Psychiatry, Yale University School of Medicine, New Haven, Conn., USA (Chen, Luo, Ide, C.-S. Li); Yale University, New Haven, Conn., USA (H.-T. Li); the Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China (G. Li); the Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China (G. Li); the Department of Neuroscience, Yale University School of Medicine, New Haven, Conn., USA (C.-S Li); the Interdepartment Neuroscience Program, Yale University, New Haven, Conn., USA (C.-S. Li); the Wu Tsai Institute, Yale University, New Haven, Conn., USA (C.-S. Li).

Background: Genetic variants may confer risk for depression by modulating brain structure and function; evidence has underscored the key role of the subgenual anterior cingulate cortex (sgACC) in depression. We sought to examine how the resting-state functional connectivity (rsFC) of the sgACC was associated with polygenic risk for depression in a subclinical population.

Methods: Following published protocols, we computed seed-based whole-brain sgACC rsFC and calculated polygenic risk scores (PRS) using data from healthy young adults from the Human Connectome Project.

View Article and Find Full Text PDF

Because hummingbirds are small and have an expensive mode of locomotion, they have constrained energy budgets. Torpor is used to buffer against these energetic challenges, but its frequency and duration vary. We measured lipid content, metabolic rates and torpor use in two species of migrating hummingbirds, calliope () and rufous hummingbirds () at a stopover site.

View Article and Find Full Text PDF

Lack of thermal acclimation in multiple indices of climate vulnerability in bumblebees.

Proc Biol Sci

January 2025

Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, Ames, IA 50010, USA.

Indices of climate vulnerability are used to predict species' vulnerability to climate change based on intrinsic physiological traits, such as thermal tolerance, thermal sensitivity and thermal acclimation, but rarely is the consistency among indices evaluated simultaneously. We compared the thermal physiology of queen bumblebees between a species experiencing local declines () and a species exhibiting continent-wide increases (). We conducted a multi-week acclimation experiment under simulated climate warming to measure critical thermal maximum (CT), critical thermal minimum (CT), the thermal sensitivity of metabolic rate and water loss rate and acclimation in each of these traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!